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About this Manual

1 About this Manual

The primary objective of this manual is to verify the capabilities of SOFiSTiK by means of nontrivial
problems which are bound to reference solutions.

To this end, this manual contains a compilation of a number of selected computational benchmarks, each
benchmark focusing on a specific (mechanical/design) topic. The obtained results from the SOFiSTiK
analysis are contrasted with corresponding reference solutions1.

The tasks covered by SOFiSTiK, address a broad scope of engineering applications and it is therefore
not possible to validate all specific features with known reference solutions in terms of this Verification
Manual. An attempt has been made though, to include most significant features of the software with
respect to common problems of general static and dynamic analysis of structures.

1.1 Layout and Organization of a Benchmark

For the description of each Benchmark, a standard format is employed, where the following topics are
always treated:

• Problem Description

• Reference Solution

• Model and Results

• Conclusion

• Literature

First, the problem description is given, where the target of the benchmark is stated, followed by the
reference solution, where usually a closed-form analytical solution is presented, when available. The
next section is the description of the model, where its properties, the loading configuration, the analysis
method and assumptions, further information on the finite element model, are presented in detail. Finally,
the results are discussed and evaluated with respect to the reference solution and a final conclusion for
the response of the software to the specific problem is drawn. Last but not least, the textbooks and
references used for the verification examples are listed, which are usually well known and come from
widely acclaimed engineering literature sources.

1.2 Finding the Benchmark of interest

There are several ways of locating a Benchmark that is of interest for the user. For each example a
description table is provided in the beginning of the document, where all corresponding categories, that
are treated by the specific benchmark, are tabulated, as well as the name of the corresponding input
file. Such a description table with some example entries, follows next.

Overview

Element Type(s): C2D

Analysis Type(s): STAT, MNL

Procedure(s): LSTP

1Where available, analytical solutions serve as reference. Where this is not feasible, numerical or empirical solutions are
referred to. In any case, the origin of the reference solution is explicitly stated.
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Topic(s): SOIL

Module(s): TALPA

Input file(s): passive earth pressure.dat

As it can be seen, the available categories are the element type, the analysis type, the procedure, the
topics and the modules. For each category that is provided in the description table, a hyperlink is created,
linking each example to the global categories tables. In this manner, the user has a direct overview of
the attributes involved in each problem, and at the same time is able to browse by category through the
Verification Manual focusing only on the one of his interest. Table 1.1 provides an overview of all the
categories options that are available.

Table 1.1: Categories Overview

Categories Options

Element Type

Continuum 3D

Continuum 2D (plane strain)

Continuum axisymmetric

Shell

FE beam 3D

Nonlinear FE beam 3D (AQB)

Fiber beam 2D

Fiber beam 3D

Truss element

Cable element

Spring element

Damping element

Couplings

Analysis Type

Geometrically nonlinear

Physically nonlinear

Dynamic

Static

Potential problem

Procedure

Buckling analysis

Eigenvalue/ Modal analysis

Time stepping

Load stepping

Phi-C reduction

Topic

Soil related

Seismic
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Table 1.1: (continued)

Categories Options

Fire design

Module

AQB

AQUA

ASE

BDK

BEMESS

CSM

DYNA

SOFiLOAD

SOFiMSHC

STAR2

TALPA

TENDON

1.3 Symbols

For the purpose of this manual the following symbols and abbreviations apply.

SOF. SOFiSTiK

Ref. reference

Tol. tolerance

cs cross-section

sect. section

temp. temperature

homog. homogeneous

Be. benchmark

con. construction

SDOF single degree of freedom

er relative error of the approximate number

|er | absolute relative error of the approximate number

e error of the approximate number

|e| absolute error of the approximate number

ep () same as e()
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2 Index by Categories

Subsequent tables show all Benchmarks included in this Verification Manual, indexed by category.

2.1 Mechanical Benchmarks

ELEMENT TYPE Keyword Benchmark Examples

Continuum 3D C3D BE41, BE42, BE43

Continuum 2D C2D BE20, BE21, BE22, BE28, BE29, BE30, BE38,
BE44, BE45, BE50, BE56

Continuum axisymmetric CAXI BE48, BE49

Shell SH3D BE7, BE8, BE11, BE14, BE32, BE33, BE34, BE35,
BE39, BE46, BE55

FE beam 3D B3D BE3, BE4, BE5, BE6, BE7, BE8, BE9, BE10, BE11,
BE12, BE13, BE15, BE16, BE17, BE18, BE19,
BE25, BE37, BE40, BE46, BE47, BE55

Fiber beam 2D BF2D BE11, BE32, BE33, BE34, BE35

Truss element TRUS BE1, BE31

Spring element SPRI BE23, BE24, BE26, BE27

Damper element DAMP BE24, BE26

ANALYSIS TYPE Keyword Benchmark Examples

Geometrically nonlinear GNL BE4, BE7, BE8, BE12, BE13, BE14, BE15, BE16,
BE17, BE18, BE19, BE31, BE37, BE40

Physically nonlinear MNL BE11, BE20, BE21, BE22, BE29, BE32, BE33,
BE34, BE35, BE38, BE46, BE47, BE48, BE49,
BE56

Dynamic DYN BE23, BE24, BE25, BE26, BE27, BE39, BE50

Static STAT BE1, BE2, BE3, BE4, BE5, BE6, BE7, BE8, BE9,
BE10, BE11, BE12, BE13, BE14, BE15, BE16,
BE17, BE18, BE19, BE20, BE21, BE22, BE28,
BE29, BE30, BE31, BE32, BE33, BE34, BE35,
BE37, BE38, BE40, BE41, BE42, BE43, BE44,
BE45, BE46

SOFiSTiK 2020 | VERiFiCATiON - Mechanical Benchmarks 7



Index by Categories

PROCEDURE Keyword Benchmark Examples

Buckling analysis STAB BE13, BE14, BE15, BE37

Eigenvalue / Modal analysis EIGE BE25, BE39, BE47

Time stepping TSTP BE23, BE24, BE26, BE27

Load stepping LSTP BE7, BE8, BE11, BE20, BE21, BE22, BE29, BE31,
BE32, BE33, BE34, BE35, BE38, BE48, BE49

Phi-C reduction PHIC BE38

TOPIC Keyword Benchmark Examples

Soil related SOIL BE20, BE21, BE22, BE28, BE29, BE30, BE38,
BE44, BE45, BE48, BE49, BE50

Seismic EQKE BE36, BE47, BE51, BE57

Fire design FIRE BE32, BE33, BE34, BE35

Wave WAVE BE52, BE53

MODULE Keyword Benchmark Examples

Design of Cross Sections and of
Prestressed Concrete and
Composite Cross Sections

AQB BE5

Materials and Cross Sections AQUA BE9

General Static Analysis of Finite
Element Structures

ASE BE1, BE2, BE3, BE4, BE5, BE6, BE7, BE8,
BE10, BE11, BE12, BE13, BE14, BE15, BE16,
BE17, BE18, BE19, BE31, BE32, BE33, BE34,
BE35, BE37, BE40, BE41, BE42, BE43, BE46,
BE47, BE55

Dynamic Analysis DYNA BE18, BE19, BE23, BE24, BE25, BE26, BE27,
BE37, BE39, BE50, BE57

Loadgenerator for Finite
Elements and Frameworks

SOFiLOAD BE36, BE47, BE51, BE52, BE53, BE54

Geometric Modelling SOFiMSHC BE2

Statics of Beam Structures 2nd
Order Theory

STAR2 BE11, BE37, BE46

2D Finite Elements in
Geotechnical Engineering

TALPA BE11, BE20, BE21, BE22, BE28, BE29, BE30,
BE32, BE33, BE34, BE35, BE38, BE44, BE45,
BE48, BE49, BE56
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3 SOFiSTiK SQA Policy

3.1 Objectives

3.1.1 About SOFiSTiK

SOFiSTiK finite element software has been continuously developed since 1981. It is currently used
by more than 10000 customers worldwide. SOFiSTiK is a multipurpose tool with extensive capabilities
which fall into a wide spectrum of engineering analyses such as static and dynamic structural analysis,
modal and buckling eigenvalue problems, nonlinearities and higher order effects, geotechnics and tunnel
analysis, heat transfer and fire analysis, as well as numerous types of other applications.

3.1.2 Innovation and Reliability

As a provider of cutting-edge engineering software, confidence in robustness and reliability of the product
is an issue of outstanding relevance for SOFiSTiK. To some degree, however, innovation and reliability
are conflicting targets, since every change introduces new possible sources of uncertainty and error.
To meet both demands on a sustainable basis, SOFiSTiK has installed a comprehensive quality assur-
ance system. The involved organizational procedures and instruments are documented in the following
Sections.

3.2 Organisation

3.2.1 Software Release Schedule

The SOFiSTiK software release schedule is characterized by a two-year major release cycle. The
first customer shipment (FCS) of a SOFiSTiK major release is preceded by an extensive BETA testing
period. In this phase - after having passed all internal test procedures (Section 3.2.4: Software Release
Procedure) - the new product is adopted for authentic engineering projects both by SOFiSTiK and by
selected customers. For a two-year transition period, subsequent major releases are fully supported in
parallel, as shown in Fig. 3.1.

2017 2018 2019 2020 2021 2022 2023 2024 2025

BETA

BETA

BETA

Start of Transition Phase
08/2019 30.09.2021

Discontinuation of Maintenance
07.08.2017

Planned: Summer 2021

FCS

08/2019
FCS Start of Transition Phase

Planned: Summer 2021

FCS

SOFiSTiK 2018

SOFiSTiK 2020

SOFiSTiK 2022

Figure 3.1: SOFiSTiK Release Schedule

The major release cycle is supplemented by a two-month service pack cycle. Service packs are quality
assured, which means they have passed both the continuous testing procedures and the functional tests
(Section 3.2.2: SQA Modules - Classification). They are available for download via the SOFiSTiK update
tool SONAR.

Software updates for the current version (service packs) include bug-fixes and minor new features only;
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major new developments with increased potential regarding side- effects are reserved for major releases
with an obligatory extensive testing period.

3.2.2 SQA Modules - Classification

Figure 3.2 depicts the ”three pillars” of the SOFiSTiK SQA procedure. Preventive and analytic provisions
can be differentiated.

Preventive provisions essentially concern the organization of the development process. They aim at
minimizing human errors by a high degree of automatism and by avoiding error-prone stress situations.
These provisions comprise:

• A thoroughly planned feature map and release schedule.

• Strict phase differentiation: Prior to any software release (also for service packs), the development
phase is followed up by a consolidation phase . This phase is characterized by extensive functional
testing. No new features are implemented, only test feedback is incorporated. For major releases,
an additional BETA test phase is scheduled.

• Fully automated build and publishing mechanisms.

Analytic provisions provide for the actual testing of the software products. Continuous Testing directly
accompanies the development process: Automated and modular regression tests assure feedback at a
very early stage of the development (Section 3.3.3: Continuous Testing). Functional Testing is carried
out in particular during the consolidation phases. These tests essentially involve manual testing; they
focus on comprehensive workflow tests and product oriented semantic tests.

SQA

(Software Quality Assurance)

Development Process

Phase differentiation, build- and
publishing mechanism

Organizational Provision

(preventive)

Continuous Testing

Automated, modular and
continuous regression testing

Instruments (analytic)

Functional Testing

Focus: workflow tests, product

oriented semantic tests

Figure 3.2: SQA Modules

3.2.3 Responsibilities

The consistent implementation of quality assurance procedures is responsibly coordinated by the man-
aging board executive for products.

The development divisions are in authority for:

• The establishment, maintenance and checking of continuous testing procedures.

• The implementation of corresponding feedback.
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The product management is responsible for:

• The coordination and execution of functional testing.

• The integration of customer feedback into the QA process.

As a corporate activity is carried out:

• Continuous review of processes.

• The identification of supplemental objectives.

• Identification and implementation of possible optimizations.

Product
Management

Functional testing
Integrating customer

feedback

Development
Continuous Integration

Continuous Testing
Implementing feedback

Corporate Activity
Adaption of processes
Definition of objectives

Coordinated by managing board

Figure 3.3: SQA Responsibilities

3.2.4 Software Release Procedure

The defined minimum requirements for software releases of type Hotfix, Service Pack and Major Release
are illustrated by Figure 3.4. Approval of individual products is accomplished by the respective person
in charge; the overall approval is in authority of the managing board executive for products.
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Release

Requirements

Hotfix

Continuous Testing

Passed

Service Pack

Continuous Testing

Passed

Functional Testing

Passed

Major Release

Continuous Testing

Passed

Functional Testing

Passed

BETA Test Phase

Passed

Figure 3.4: Software Release Requirements

3.3 Instruments

3.3.1 CRM System

Each request from our customers is traced by means of a Customer Relation Management (CRM)
System assuring that no case will be lost. Detailed feedback to the customer is provided via this system.

Possible bug fixes or enhancements of the software are documented with version number and date
in corresponding log files. These log files are published via RSS-feed to our customers. In this way,
announcement of available software updates (service-pack or hotfix) is featured proactively. Moreover,
information is provided independent of and prior to the actual software update procedure.

Further sources of information are the electronic newsletter/ newsfeeds and the internet forum
(www.sofistik.de / www.sofistik.com).

3.3.2 Tracking System (internal)

For SOFiSTiK-internal management and coordination of the software development process - both re-
garding implementation of features and the fixing of detected bugs - a web-based tracking system is
adopted.

3.3.3 Continuous Integration – Continuous Testing

As mentioned above, the production chain is characterized by a high degree of automation. An important
concern is the realization of prompt feedback cycles featuring an immediate response regarding quality
of the current development state.
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Automated
Continuous Integration

procedure

Automated
Continuous Testing

procedure

Development/ PM
Assessing feedback

Committing modifications

Figure 3.5: Feedback cycle: Continuous Integration – Continuous Testing

Continuous integration denotes the automated process, assuring that all executed and committed mod-
ifications of the program’s code basis are directly integrated via rebuild into the internal testing environ-
ment.

Upon completion of the integration, the continuous testing procedure is triggered automatically. This
procedure executes a standardized testing scenario using the newly updated software. Test results are
prepared in form of compact test protocols allowing for quick assessment.

The executed tests are so-called regression tests. Regression tests examine by means of associated
reference solutions wether the conducted modifications of the code basis cause undesired performance
in other already tested parts of the program.

Together, continuous integration and continuous testing form the basis for a quality control that directly
accompanies the development process. This way, possibly required corrections can be initiated promptly.
SOFiSTiK has successfully implemented this procedure. Currently, the continuous test database com-
prises more than 3000 tests.

3.4 Additional Provisions

3.4.1 Training

As a special service to our customers, SOFiSTiK provides for comprehensive and individually tailored
training to support a qualified and responsible use of the software. This is complemented by offering a
variety of thematic workshops which are dedicated to specific engineering topics.

It is the credo of SOFiSTiK that a high-quality product can only be created and maintained by highly qual-
ified personnel. Continuing education of the staff members is required by SOFiSTiK and it is supported
by an education program which involves both in- house trainings and provisions of external trainings on
a regular basis.

3.4.2 Academia Network

Arising questions are treated by an intense discussion with customers, authorities and scientists to find
the best interpretation.
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3.5 Disclaimer

Despite all efforts to achieve the highest possible degree of reliability, SOFiSTiK cannot assure that the
provided software is bug-free or that it will solve a particular problem in a way which is implied with the
opinion of the user in all details. Engineering skill is required when assessing the software results.
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4 BE1: Joint Deflection of Plane Truss

Overview

Element Type(s): TRUS

Analysis Type(s): STAT

Procedure(s):

Topic(s):

Module(s): ASE

Input file(s): truss.dat

4.1 Problem Description

The problem consists of a plane truss structure, as shown in Fig. 4.1. Determine the vertical deflection
at the free node 8.

PPP

Figure 4.1: Problem Description

4.2 Reference Solution

The problem of determining the displacements of trusses can be treated in various ways. Popular among
engineers, is to apply energy methods, e.g. the method of virtual work or Castigliano’s theorem, to solve
problems involving slope and deflection, that are based on the conservation of energy principle, and
are more suitable for structures with complicated geometry such as trusses. Further information on this
topic can be found in numerous engineering books, dealing with structural analysis [1].

4.3 Model and Results

The general properties of the model [2] are defined in Table 4.1. The total width of the truss is 60 ƒ t,
consisting of four spaces of 15 ƒ t each, and the total height is 15 ƒ t. The load is applied equally at the
three free nodes at the bottom of the truss. The results are presented in Table 4.2 and compared to the
reference example [2]. Fig. 4.2 shows the deflections and the deformed shape of the structure.

SOFiSTiK 2020 | VERiFiCATiON - Mechanical Benchmarks 19



BE1: Joint Deflection of Plane Truss

Table 4.1: Model Properties

Material Properties Geometric Properties Loading

E = 29 103 ks tot = 60 ƒ t = 18.288m P = 20kp = 89.0kN

= 206842.773MP htot = 15 ƒ t = 4.572m

ν = 0.3 2 = 11 = 7.5 ƒ t = 2.286m

1 = 4 = 6 = 10 = 12 = 15 ƒ t =
4.572m

A1 = A4 = 2 n2 = 12.90 cm2

A2 = A11 = A10 = A12 = 1 n2 =
6.45 cm2

A5 = A9 = 1.5 n2 = 9.68 cm2

A3 = A6 = 3 n2 = 19.35 cm2

A7 = A8 = 4 n2 = 25.81 cm2

Table 4.2: Results

SOF. Ref. [2] |er | [%]

δ8 [mm] 69.11 69.09 0.036
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Figure 4.2: Problem Description

4.4 Conclusion

This example verifies the deflection of trusses. It has been shown that the behaviour of the truss is
accurately captured. It should be noted that in the reference example [2] the deflection in inches was
rounded to two decimal places, which leads to a higher relative error in Table 4.2. When comparing the
SOFiSTIK result with an analytical solution rounded to four decimal places, the relative error decreases
to 0.0004%.

4.5 Literature

[1] R. C. Hibbeler. Structural Analysis. 8th. Prentice Hall, 2012.
[2] J. C. McCormac. Structural Analysis. Wileys & Sons, 2007.
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5 BE2: Kinematic Coupling Conditions

Overview

Element Type(s): COUP

Analysis Type(s): STAT

Procedure(s):

Topic(s):

Module(s): SOFiMSHC, ASE

Input file(s): coupling.dat

5.1 Problem Description

This problem verifies the kinematic coupling conditions for a structural point. Each coupling condition is
tested on a pair of beams coupled with each other through structural points, as shown in Fig. 5.1. Four
different cases are considered and the deflections of the beams are determined and compared to the
analytical solution.

A
A′′

Figure 5.1: Problem Description

5.2 Reference Solution

In this example the problem of coupling structural points is treated. Through the definition of kinematic
coupling conditions between structural points the constraint of one or multiple degrees of freedom is
allowed. The displacement values of the given structural point A′′ are defined according to the respective
displacement values of the referenced (or master-) node A. Various cases are possible in SOFiSTiK
for the coupling conditions. With the exception of the three conditions KPX, KPY and KPZ, which
only couple the corresponding displacement. e.g.  = o , all other coupling conditions satisfy the
mechanical equilibrium conditions by taking the real distances between the two connected points into
account, e.g. the conditions KPPX, KPPY, KPPZ correspond to the following expressions respectively
[3] [4]:

 = o + ϕyo(z − zo) − ϕzo(y − yo) (5.1)
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y = yo + ϕzo( − o) − ϕo(z − zo) (5.2)

z = zo + ϕo(y − yo) − ϕyo( − o) (5.3)

Mechanically they act like infinitely stiff structural members. A number of additional literals are provided
in SOFiSTiK which allow to define a combination of coupling relations. For example, a rigid connection
with hinged conditions at the reference node is described by

KP = KPPX + KPPY + KPPZ (5.4)

whereas

KF = KP + KMX + KMY + KMZ = KPPX + KPPY + KPPZ + KMX + KMY + KMZ (5.5)

describes mechanically a rigid connection with clamped support at the reference node. Further informa-
tion on the topic are provided in SOFiSTiK manual of module SOFiMSHC [3].

5.3 Model and Results

The general properties of the model are defined in Table 5.1. All beams are of 4 m length and consist
of a standard rectangular cross-section and a standard concrete material. The structural points A and
A′′ have a distance of 2 m in the axial direction. Four coupling conditions are considered :

• KPPX, where only the displacement in the global x direction is connected

• LPX, where only the displacement in the structural point’s local x direction is connected

• KP, where the displacements in x, y and z direction are connected

• KF, where the displacements and the rotations in x, y and z direction are connected

All cases are tested for four loadcases, i.e. a horizontal Py, a longitudinal P, a vertical Pz and a
rotational M.

Table 5.1: Model Properties

Material Properties Geometric Properties Loading

C 30/45 bem = 4m Py = 50.0 kN

hA = 0.4m, bA = 0.2m P = −50.0 kN

h
A′′ = 0.3m, b

A′′ = 0.15m Pz = 50.0 kN

(A′′ − A) = 2m M = 10.0 kN

(yA′′ − yA) = 0m

(zA′′ − zA) = 0m
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In the cases, where only a displacement is transferred in the vertical z or horizontal direction y , a
rotation results in the other direction. If for example, we consider a coupling of only the displacement
in the y direction, then a rotation of ϕz = 3y/(2bem) will also result as the effect of a prescribed
displacement of value y at the beam tip A′′.

Table 5.2: Results for KPPX Coupling Condition

Load  [mm]

Case SOF. Ref.

P −0.107 −0.107

Table 5.3: Results for LPX Coupling Condition

Load y [mm] ϕz [mrd]

Case SOF. Ref. SOF. Ref.

Py 165.284 165.284 −61.919 −61.982

Table 5.4: Results for KP and KF Coupling Condition

Coupling KP KF

DOF / LC Py P Pz Py P Pz M

 [mm]
SOF. 0.0 −0.107 0.0 0.0 −0.107 0.0 0.0

Ref. 0.0 −0.107 0.0 0.0 −0.107 0.0 0.0

y [mm]
SOF. 165.284 0.0 0.0 49.325 0.0 0.0 0.0

Ref. 165.284 0.0 0.0 49.325 0.0 0.0 0.0

z [mm]
SOF. 0.0 0.0 41.528 0.0 0.0 12.531 0.0

Ref. 0.0 0.0 41.528 0.0 0.0 12.531 0.0

ϕ [mrd]
SOF. 0.0 0.0 0.0 0.0 0.0 0.0 6.671

Ref. 0.0 0.0 0.0 0.0 0.0 0.0 6.671

ϕy [mrd]
SOF. 0.0 0.0 15.510 0.0 0.0 0.200 0.0

Ref. 0.0 0.0 15.573 0.0 0.0 0.200 0.0

ϕz [mrd]
SOF. −61.919 0.0 0.0 −0.725 0.0 0.0 0.0

Ref. −61.982 0.0 0.0 −0.725 0.0 0.0 0.0

The results are presented in Tables 5.2 - 5.4, where they are compared to the reference results calcu-
lated with the formulas provided in Section 5.2. Due to the extent of the results only non zero values will
be presented in the result tables. Figures 5.2, 5.3 present the results for the KF coupling condition for
the load cases 1 to 4 for both displacements and rotations, respectively.
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LC 1 LC 2

LC 3 LC 4

Figure 5.2: Displacement Results for KF coupling for LC 1-4

LC 1 LC 2

LC 3 LC 4

Figure 5.3: Rotation Results for KF coupling for LC 1-4
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5.4 Conclusion

This example verifies the coupling of structural points. It has been shown that the behaviour is accurately
captured.

5.5 Literature

[3] SOFiMSHC Manual: Geometric Modelling. Version 18-0. SOFiSTiK AG. Oberschleißheim, Ger-
many, 2017.

[4] SOFiMSHA Manual: Import and Export of Finite Elements and Beam Structures. Version 18-0.
SOFiSTiK AG. Oberschleißheim, Germany, 2017.
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6 BE3: Beam Stresses and Deflections

Overview

Element Type(s): B3D

Analysis Type(s): STAT

Procedure(s):

Topic(s):

Module(s): ASE

Input file(s): rect beam.dat, I beam.dat

6.1 Problem Description

A rectangular beam is supported as shown in Fig. 6.1 and loaded on the overhangs by a uniformly
distributed load q. Determine the maximum bending stress σ in the middle portion of the beam and the
deflection δ at the middle of the beam.

qq

| ←−  −→ || ←−  −→ | ←−  −→

Figure 6.1: Beam structure

6.2 Reference Solution

The magnitude of the stresses at a cross-section is defined by the magnitude of the shearing force
and bending moment at that cross-section. Under pure bending, the maximum tensile and compressive
stresses occur in the outermost fibers. For any cross-section, which has its centroid at the middle of the
depth h, and for a linear elastic material behaviour, the maximum stresses occur for z = ±h/2 [5]:

σm =
Mh

2
and σmn = −

Mh

2
, (6.1)

in which , is the moment of inertia of the cross-section with respect to the neutral axis and M the bending
moment. For a beam overhanging equally at both supports with a uniformly distributed load applied at
the overhangs (Fig. 6.1), assuming Bernoulli beam theory, the deflection at the middle of the beam is:

δ =
q22

16E
=
M2

8E
, (6.2)

where q is the value of the uniformly distributed load,  the length of the overhangs,  the length of the
middle span and M the bending moment at the middle of the beam.
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6.3 Model and Results

The model is analysed for two different cross-sections, a rectangular and a general I-beam cross-section.
The properties are defined in Table 6.1. The results are presented in Table 6.2. As to be expected, the
analysis yields the same results for the maximum bending stress and deflection at the middle of the
beam for the two models. Figure 6.2 shows the distribution of the stresses along the cross-sections for
the two analysed examples. Figure 6.3 shows the deformed structure with the nodal displacements.

Table 6.1: Model Properties

Material Properties Geometric Properties Geometric Properties Loading

Rectangular I-beam

E = 30000MP  = 200mm  = 200mm q = 10 kN/m

 = 100mm b = 16mm

h = 30mm teb = 2.174mm

b = 7mm tƒ nge = 2mm

y = 1.575 cm4 y = 1.575 cm4

Table 6.2: Results

Rectangular I-beam Ref.

σm [MPa] 47.619 47.620 47.619

δ [mm] 0.529 0.529 0.529

172.14 172.14
172.14 172.14

026.74 026.74

026.74 026.74

172.14 172.14
172.14 172.14

026.74

026.74

026.74- 026.74-

026.74- 026.74-

172.14- 172.14-
172.14- 172.14-172.14- 172.14-

172.14- 172.14-

026.74- 026.74-

026.74-

916.74 916.74
916.74 916.74 916.74

916.74- 916.74-
916.74- 916.74-

916.74-916.74-

Figure 6.2: Distribution of stresses
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Figure 6.3: Deformed Structure
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6.4 Conclusion

This example adresses the computation of beam stresses and deflections. It has been shown that the
behaviour of the beam is captured with an excellent accuracy.

6.5 Literature

[5] S. Timoshenko. Strength of Materials, Part I, Elementary Theory and Problems. 2nd. D. Van Nos-
trand Co., Inc., 1940.
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7 BE4: Tie Rod with Lateral Loading

Overview

Element Type(s): B3D

Analysis Type(s): STAT, GNL

Procedure(s):

Topic(s):

Module(s): ASE

Input file(s): tie rod.dat

7.1 Problem Description

A tie rod is subjected to the action of a tensile force N and a lateral load P applied at the middle as
shown in Fig. (7.1). Determine the maximum deflection δm, the slope θ at the left-hand end and
the maximum bending moment Mm. In addition, compare these three quantities for the case of the
unstiffned tie rod (N = 0).

| ←−  −→ |

NN

P

Figure 7.1: Tie Rod

7.2 Reference Solution

The combination of direct axial force and lateral load applied at a beam influences the reaction of the
structure. Assuming that the lateral force acts in one of the principal planes of the beam and that the
axial force is centrally applied by two equal and opposite forces, the expressions for the deflections can
be derived from the differential equations of the deflection curve of the beam [6]. Under tension, the
maximum deflections of a laterally loaded beam decrease whereas under compression they increase.
The moments of the structure are influenced accordingly.

For the simple problem of a beam with hinged ends, loaded by a single force P at the middle, the
maximum deflection at the middle is:

δm =
P3

48E
, (7.1)

where  is the lenght of the beam and E its flexural rigidity. The slope θ at both ends is:

θ = ±
P2

16E
. (7.2)
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The maximum value of the bending moment at the middle is:

Mm =
P

4
. (7.3)

When now the structure (Fig. 7.1) is submitted to the action of tensile forces N in addition to the initial
lateral load P, the deflection at the middle becomes [6]:

δm =
P3

48E
·
 − tanh 

1
3

3
, (7.4)

where 2 = N2/4E. The first factor in Eq. (7.4) represents the deflection produced by the lateral load
P acting alone. The second factor indicates in what proportion the deflection produced by P is magnified
by the axial tensile force N, respectively. When N is small, it approaches unity, which indicates that
under this condition the effect on the deflection of the axial force is negligible. The expressions for the
moment and the slopes can be derived accordingly [6].

7.3 Model and Results

The properties of the model are defined in Table 7.1 and the results are presented in Table 7.2. Fig. 7.2
shows the deformed structure under tension and lateral loading.

Table 7.1: Model Properties

Material Properties Geometric Properties Loading

E = 30000MP  = 2m P = 0.1 kN

h = 30mm N = 0.1 kN

b = 30mm

 = 6.75 × 10−8m4

Figure 7.2: Deformed Structure [mm]: N 6= 0
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Table 7.2: Results

N = 0 Ref. N 6= 0 Ref.

δm [m] 0.00823 0.00823 0.00807 0.00807

Mm [kNm] 0.05000 0.05000 0.04919 0.04919

θ [rd] 0.01235 0.01235 0.01210 0.01210

7.4 Conclusion

This example presents the influence of axial forces applied at a laterally loaded beam. The case of
a tie rod is examined and the maximum deflections and moment are derived. It has been shown that
the behaviour of a beam under the combination of direct axial force and lateral load can be adequately
captured.

7.5 Literature

[6] S. Timoshenko. Strength of Materials, Part II, Advanced Theory and Problems. 2nd. D. Van Nos-
trand Co., Inc., 1940.
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8 BE5: Bending of a T-beam

Overview

Element Type(s): B3D

Analysis Type(s): STAT

Procedure(s):

Topic(s):

Module(s): AQB, ASE

Input file(s): t beam.dat

8.1 Problem Description

An asymmetric T-beam is supported as shown in Fig. 8.1 and subjected to uniform bending Mz. Deter-
mine the maximum tensile and compressive bending stresses.

Mz

Mz

z



y

h2

h1

| ←−  −→ |

Figure 8.1: Model Properties

8.2 Reference Solution

According to the discussion in Benchmark Example no. 3, it follows that the maximum tensile and
compressive stresses in a beam in pure bending are proportional to the distances of the most remote
fibers from the neutral axis of the cross-section. When the centroid of the cross-section is not at the
middle of the depth, as, for instance, in the case of a T-beam, let h1 and h2 denote the distances from
the neutral axis to the outermost fibers in the downward and upward directions (Fig. 8.1) respectively.
Then for a bending moment Mz, we obtain the maximum tensile and compressive stresses [5]:

σm =
Mzh1

z
and σmn = −

Mzh2

z
. (8.1)

8.3 Model and Results

The properties of the model are defined in Table 8.1. Distances from the centroid to the top and bottom
of the beam are calculated as 14 cm and 6 cm respectively. The results are presented in Table 8.2.
Figure 8.2 shows the distribution of the stresses along the cross-section.
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Table 8.1: Model Properties

Material Properties Geometric Properties Loading

E = 30000MP  = 1m Mz = 100 kNm

h = 20 cm

h1 = 6 cm, h2 = 14 cm

b = 9 cm

teb = 1.5 cm

tƒ nge = 4 cm

z = 2000 cm4

Table 8.2: Results

SOF. Ref.

σm [MPa] 300 300

σmn [MPa] −700 −700

00.0

00.001 00.001

00.001 00.001

00.003 00.003

00.003 00.003

00.001 00.001

00.001 00.001

00.003

00.003

00.007- 00.007-

00.007- 00.007-

00.007- 00.007-

00.007-

Figure 8.2: Distribution of Stresses

8.4 Conclusion

This example shows the derivation of stresses for beams with asymmetric cross-section in which the
centroid of the cross-section is not at the middle of the depth. It has been shown that the behaviour of
the beam is captured with an excellent accuracy.

8.5 Literature

[5] S. Timoshenko. Strength of Materials, Part I, Elementary Theory and Problems. 2nd. D. Van Nos-
trand Co., Inc., 1940.

38 VERiFiCATiON - Mechanical Benchmarks | SOFiSTiK 2020



BE6: Warping Torsion Bar

9 BE6: Warping Torsion Bar

Overview

Element Type(s): B3D

Analysis Type(s): STAT

Procedure(s):

Topic(s):

Module(s): ASE

Input file(s): warping.dat

9.1 Problem Description

A cantilever I-bar is fixed at both ends, as shown in Fig. 9.1, and subjected to a uniformly distributed
torque mT [7]. Determine the angle of twist ϕ at the midspan.

| ←−  −→ |

mT

Figure 9.1: An I-bar with Uniformly Distributed Torque

9.2 Reference Solution

In mechanics, torsion is the twisting of a structure due to an applied torque. There are two types of
torsion: St. Venant torsion and warping torsion. St. Venant torsion exists always when an element is
twisted, whereas the warping torsion occurs additionally under specific conditions. The warping of a
section depends on the section geometry which means that there exist warping-free, such as circular,
and warping-restrained sections. St. Venant torsion is based on the assumption that either the cross-
section is warping-free or that the warping is not constrained. If at least one of these conditions is not
met then the warping torsion appears [6].

y

z

ϕ

T

Figure 9.2: Circular Shaft

A member undergoing torsion will rotate about its shear center through an angle of ϕ. Consider a circular
shaft that is attached to a fixed support at one end. If a torque T is applied to the other end, the shaft
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will twist, with its free end rotating through an angle ϕ called the angle of twist [8]:

ϕ =
TL

GT
, (9.1)

where G is the shear modulus and T the torsional moment of inertia. For a circular shaft subjected to
torsion, each cross-section rotates along the shaft as a solid rigid slab (warping-free cross-section). The
torsional moment resisted by the cross-section is:

T = GT
dϕ

d
, (9.2)

For most cross-sections, e.g. non-circular, this rotation of the cross-section is accompanied by warping.
Then the total torsional moment resisted by the cross-section becomes the sum of the pure torsion
and warping torsion [9]. The stresses induced on the member is then classified into three categories:
torsional shear stress, warping shear stress and warping normal stress. For example, when a bar of an
I-cross-section is subjected to torsion, then the flanges of the cross-section experience bending in the
flange planes. This means that torsion induces bending about the strong axis of the flanges. When the
tendency for the cross-section to warp freely is prevented or restrained, it causes stresses to develop.
The torque that the cross-section carries by bending is:

T = ECM
d3ϕ

d3
(9.3)

where ECM, is the warping torsion stiffness. Furthermore, in warping torsion theory the bimoment is
defined as an auxiliary quantity. The objective is to introduce a degree of freedom for beam elements
that represents the torque due to restrained warping. The bimoment Mω is defined as:

Mω = ECM
d2ϕ

d2
(9.4)

It should be noted, that the bimoment itself is not measurable, however it serves as a convenient param-
eter to quantify this prevention of warping.



mT

y

(a)

mT()

mT

MT

(b)

MT + MT́d

d



mT =m0 +m1



(c)


d

m1

m0

Figure 9.3: The Warping Torsion Problem

Fig. 9.3 (a) shows the warping torsion problem of a bar subjected to a distributed external torque. The
differential equation governing the warping torsion problem, for a constant cross-section, becomes [10]:
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ECM
d4ϕ

d4
− GT

d2ϕ

d2
=mT , (9.5)

where mT the distributed torque along the bar. The natural boundary conditions are:

Mω = ECM
d2ϕ

d2
, z = 0 or l (9.6)

and

−ECM
d3ϕ

d3
+ GT

dϕ

d
= MT , z = 0 or l (9.7)

where MT is the concentrated end torque and Mω the bimoment. Introducing λ, the so called decay
factor, in the above equation, and a simplified notation for the derivatives of ϕ, we obtain:

ϕ
′′′′
− λ2ϕ

′′
=

mT

ECM
. (9.8)

The solution of the warping torsion equation depends on the type of the torsional load and the kinematic
boundary conditions, especially the amount of prevention of the warping. The complete solution system
of Eq. 9.8, for the load type given in Fig. 9.3 (c), is thus:

ϕ =
C1

λ2
snh λ +

C2

λ2
cosh λ + C3 + C4 −

1

2GT
(m0 +

1

3
m1




)2 (9.9)

ϕ
′
=
C1

λ
cosh λ +

C2

λ
snh λ + C3 −

1

2GT
(2m0 +m1




) (9.10)

ϕ
′′
= C1snh λ + C2cosh λ −

1

GT
(m0 +m1




) (9.11)

ϕ
′′′
= C1λcosh λ + C2λsnh λ −

m1

GT 
(9.12)

The values of the constants C1 to C4 can be derived with respect to the kinematic boundary conditions of
the problem. For the case of warping-free sections, where CM = 0, the differential equation is shortened,
leading to the St. Venant torsion problem.

9.3 Model and Results

The properties of the analysed model, are defined in Table 9.1. The corresponding results are presented
in Table 9.2. Figure 9.4 shows the deformed shape of the structure and the angle of twist.
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Table 9.1: Model Properties

Material Properties Cross-sectional Properties Loading

E = 217396.3331684N/mm2  = 1m mT = 1Nmm/mm

G = 81386.6878N/mm2 h = 80mm

ν = 0.33557673 t = 2mm

b = 40mm

CM = 0.323 × 108mm6

T = 431.979mm4

Table 9.2: Results

Twist in x-direction Ref. [7]

ϕ [mrd] 0.329659 0.329262

Figure 9.4: Deformed Stucture

9.4 Conclusion

This example presents the warping torsion problem. The total torsional moment resisted by the cross-
section is the sum of that due to pure torsion, which is always present, and that due to warping. It has
been shown that the behaviour of the beam for warping is captured correctly.

9.5 Literature

[6] S. Timoshenko. Strength of Materials, Part II, Advanced Theory and Problems. 2nd. D. Van Nos-
trand Co., Inc., 1940.

[7] C-N. Chen. “The Warping Torsion of a Bar Model of the Differential Quadrature Element Method”.
In: Computers and Structures 66.2-3 (1998), pp. 249–257.

[8] F.P. Beer, E.R. Johnston, and J.T. DeWolf. Mechanics of Materials. 4th. McGraw-Hill, 2006.
[9] P. Seaburg and C.J. Carter. Steel Design Guide Series 9: Torsional Analysis of Structural Steel

Members. AISC. 2003.
[10] C. Petersen. Stahlbau. 2nd. Vieweg, 1990.
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10 BE7: Large Deflection of Cantilever Beams I

Overview

Element Type(s): B3D, SH3D

Analysis Type(s): STAT, GNL

Procedure(s): LSTP

Topic(s):

Module(s): ASE

Input file(s): beam elem.dat, quad elem.dat

10.1 Problem Description

A cantilever beam is supported as shown in Fig. 10.1. The beam is subjected to a total vertical load,
applied at the tip of the cantilever, which should cause the tip to deflect significantly. The determination
of the non-dimensional tip deflections ratios are determined.

| ←−  −→ |

P

Figure 10.1: Model Properties

10.2 Reference Solution

The classical problem of deflection of a cantilever beam of linear elastic material, under the action
of an external vertical concentrated load at the free end, is analysed (Fig. 10.2). The solution for
large deflection of a cantilever beam cannot be obtained from elementary beam theory since basic
assumptions are no longer valid. The elementary theory includes specific simplifications e.g. in the
consideration of curvature derivatives, and provides no correction for the shortening of the moment arm
as the loaded end of the beam deflects. For large finite loads, it gives deflections greater than the length
of the beam [11].

P

Δ

δ

L

Figure 10.2: Problem Definition

The mathematical treatment of the equilibrium of cantilever beams does not involve great difficulty. Nev-
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ertheless, unless small deflections are considered, an analytical solution does not exist, since for large
deflections a differential equation with nonlinear terms must be solved. The problem is said to involve
geometrical nonlinearity [12]. Therefore in order to account for this nonlinear term, third order theory is
performed, where the equilibrium is established at the deformed configuration (geometrically nonlinear
analysis).

10.3 Model and Results

A circular pipe with cross-section of outer diameter 0.2m and wall thickness 0.01m is used, so that
the beam is moderately slender. This type of problem becomes considerably more difficult numerically
as the slenderness ratio increases [13]. The finite element model consists of twenty elements. The
properties of the model are defined in Table 10.1.

Table 10.1: Model Properties

Material Properties Geometric Properties Loading

E = 100MP  = 10m P = 269.35N

D = 0.2m

t = 0.01m

As an alternative, the structure is analysed with quad plane elements with a cross-section of the same
stiffness as the circular, in order to achieve the same results and compare the behaviour of the two types
of elements. The quad cross-section has a width of 0.3m and a thickness of 0.10261m, and therefore
the same moment of inertia  = 2.701m−5 as the one of the circular cross-section. Results for both
models are presented in Table 10.2. Figure 10.3 shows the deflection of the beam for the two analysed
models. Figure 10.4 presents the results, in terms of the motion of the tip of the cantilever, where they
are compared to the exact solution for the inextensible beam, as given by Bisshopp and Drucker [11].

Figure 10.3: Deformed structure: a) Beam elements b) Quad elements

Table 10.2: Results

Beam Quad

δ[m] 8.113 8.102
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Table 10.2: (continued)

Beam Quad

Δ[m] 5.545 5.539

0.0      1.0        2.0       3.0        4.0       5.0        6.0       7.0        8.0       9.0      10.0
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0.8
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0.4

0.3

0.2

0.1

0.0
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L − Δ δ
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0.6

0.5

0.4

0.3

0.2

0.1
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Figure 10.4: Load - Deflection: (a). Beam elements (b). Quad elements
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10.4 Conclusion

This benchmark shows the classical problem of a cantilever beam undergoing large deformations under
the action of a vertical load at the tip. Results are presented in terms of the motion of the tip of the
cantilever where the accuracy of the solution is apparent.

10.5 Literature

[11] K. E. Bisshopp and D. C. Drucker. “Large Deflection of Cantilever Beams”. In: Quarterly of Applied
Mathematics 3 (1945), pp. 272–275.

[12] T. Beléndez, C. Neipp, and A. Beléndez. “Large and Small Deflections of a Cantilever Beam”. In:
European Journal of Physics 23.3 (2002), pp. 371–379.

[13] Abaqus Benchmarks Manual 6.10. Dassault Systémes Simulia Corp. 2010.

46 VERiFiCATiON - Mechanical Benchmarks | SOFiSTiK 2020



BE8: Large Deflection of Cantilever Beams II

11 BE8: Large Deflection of Cantilever Beams II

Overview

Element Type(s): B3D, SH3D

Analysis Type(s): STAT, GNL

Procedure(s): LSTP

Topic(s):

Module(s): ASE

Input file(s): moment beam.dat, moment quad.dat

11.1 Problem Description

The cantilever beam of Benchmark Example No. 7 is analysed here for a moment load, as shown in Fig.
11.1, with both beam and quad plane elements. The accuracy of the elements is evaluated through the
deformed shape of the beam retrieved by limit load iteration procedure.

| ←−  −→ |

P

Figure 11.1: Model Properties

11.2 Reference Solution

The classical problem of deflection of a cantilever beam of linear elastic material, is here extended for
the case of a moment applied at the beam tip. The concentrated moment causes the beam to wind
around itself, i.e. deflect upwards and bend towards the built-in end. The analytical solution can be
derived from the fundamental Bernoulli-Euler theory, which states that the curvature of the beam at any
point is proportional to the bending moment at that point [14]. For the case of pure bending, the beam
will bend into a circular arc of curvature R

R =
E

M
, (11.1)

and will wind n times around itself [13]

ML

E
= 2πn, (11.2)

where  is the moment of inertia, E the Elasticity modulus and M the concentrated moment applied at
the tip.

11.3 Model and Results

The properties of the two models analysed are defined in Table 11.1. For the moment load, the deformed
shape of the structure for quad elements at various increments throughout the steps, are shown in Fig.
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11.2. According to the analytical solution and the moment load applied, the cantilever is expected to
wind around itself n = 2.

Table 11.1: Model Properties

Material Properties Geometric Properties Geometric Properties Loading

Beam elements Quad elements

E = 100MP  = 10m  = 10m M = 3.38478 kNm

D = 0.2m B = 0.3m

t = 0.01m t = 0.10261m

Figure 11.2: Deformed Structure - Quad Elements

Figure 11.3: Final Deformed Shape of Cantilever with Quad Elements

Figure 11.4 presents the load - deflection curve for the horizontal and vertical direction for the two
cases. From the final deformed shape of the beam (Fig. 11.3), it is evident that the cantilever achieves
n ≈ 2, which can also be observed at the second load-deflection curve where the vertical displacement
becomes zero twice.
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Beam Elements

Quad Elements

Figure 11.4: Load - Deflection Curve

11.4 Conclusion

This benchmark shows the classical problem of a cantilever beam undergoing large deformations under
the action of a moment load applied at the tip. The accuracy of the deformation solution for the quad
and beam elements is evident.

11.5 Literature

[13] Abaqus Benchmarks Manual 6.10. Dassault Systémes Simulia Corp. 2010.
[14] A. A. Becker. Background to Finite Element Analysis of Geometric Non-linearity Benchmarks.

Tech. rep. NAFEMS, 1998.
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12 BE9: Verification of Beam and Section Types I

Overview

Element Type(s): B3D

Analysis Type(s): STAT

Procedure(s):

Topic(s):

Module(s): AQUA

Input file(s): cross sections FEM.dat,cross sections BEM.dat

12.1 Problem Description

In this Benchmark different cross-section types are investigated, in order to test the properties of each
cross-section associated with their definition in AQUA module. The analysed non-tabulated and tabu-
lated cross sections are shown in Figures 12.1 and 12.2, respectively.

(1) SQUARE

(2) RECTANGLE

(3) CIRCLE

(4) PIPE
(5) T-BEAM

(6) I-BEAM
(7) SQUARE BOX

(8) SQUARE BOX OPEN
(9) RECTANGLE BOX

(10) C-BEAM (11) L-BEAM

Figure 12.1: Non-tabulated Cross Sections
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(12) L 100 10 (13) I 100 (14) UPE 100

(15) IPE 400

Figure 12.2: Tabulated Cross Sections

12.2 Reference Solution

The important values of a cross-section for the simple cases of bending and torsion are the moment of
inertia and the torsional moment, respectively. The analytical solution for the moment of inertia y with
respect to y axis is [5]:

y =
∫

A
z2dA, (12.1)

in which each element of area dA is multiplied by the square of its distance from the z-axis and the
integration is extended over the cross-sectional area A of the beam (Fig. 12.3). The torsional moment
T is more complicated to compute and depends on the cross-sections geometry. For circular cross-
sections is:

T =
∫

A
r2dA, (12.2)

For thick-walled non-circular cross-sections, it depends on the warping function. Tabulated formulas are
given in all relevant handbooks for the most common geometries [15]. For closed thin-walled non-circular
cross-sections T is [10]:

T =
4A2

m
∑n
=1

s

t

, (12.3)

and for open thin-walled non-circular cross-sections is:

T =
1

3

n
∑

=1

st
3

, (12.4)

where Am is the area enclosed from the center line of the wall (Fig. 12.3), and t, s the dimensions of
the parts from which the cross-section consists of. For the specific case of an I-cross-section, another
approximate formula can be utilised, as defined by Petersen [10]:

T = 2
1

3
b t3

�

1 − 0.630
t

b

�

+
1

3
(h − 2t) s3 + 2 α D4, (12.5)

where s, t and D are described in Fig. 12.3 and α is extracted from the corresponding diagram, given
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in [10], w.r.t. the cross-section properties. For the same cross-section but according to Gensichen, T is
accordingly computed as:

T = 2
1

3
b t3

�

1 − 0.630
t

b

�

+
1

3
(h − 2t) s3 + 0.29

s

t





� s
2

�2 + t2

t





4

(12.6)

yr
dA

z

Am

h

D
t

s

b

Figure 12.3: Cross-Sectional Properties

12.3 Model and Results

The properties of different cross-sections, analysed in this example, are defined in Table 12.1. The cross-
sections types are modelled in various ways in AQUA and compared. For differentiation between them,
the modelling type is specified next to the name of each cross-section. The cross-sectional properties
of the thick walled sections are computed by implementing the finite element method (FEM).

Table 12.1: Cross-Sections Properties

Material Properties Cross-sectional Properties

E = 30MP b = 100mm

ν = 0.3 h = 100mm

t = 10mm

D = 100mm

Table 12.2: Results

y [cm4] |er | T [cm4] |er |

Type SOF. Ref. [%] SOF. Ref. [%]

(1) Square -srec 833.33 833.33 0.00 1405.78 1400.00 (12.4) 0.41

(2) Rectangle -srec 0.83 0.83 0.00 3.12 3.13 (12.4) 0.22

(3) Circle -scit 490.87 490.87 0.00 981.75 981.75 (12.4) 0.00

(3) Circle -tube 490.87 490.87 0.00 981.75 981.75 (12.4) 0.00
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Table 12.2: (continued)

y [cm4] |er | T [cm4] |er |

Type SOF. Ref. [%] SOF. Ref. [%]

(4) Pipe -scit 289.81 289.81 0.00 579.62 579.62 (12.4) 0.00

(4) Pipe -tube 289.81 289.81 0.00 579.62 579.62 (12.4) 0.00

(5) T-beam -poly 180.00 180.00 0.00 6.37 6.33 (12.4) 0.63

(5) T-beam -plat 181.37 182.82 0.79 6.50 6.50 (12.4) 0.00

(6) I-beam -poly 449.33 449.33 0.00 9.67 9.33 (12.4) 3.64

9.62 (12.6) 0.52

9.21 ( 12.5) 4.99

(6) I-beam -plat 465.75 467.42 0.36 9.67 9.33 (12.4) 3.64

(6) I-beam -weld 447.67 449.33 0.37 9.33 9.33 (12.4) 0.00

(7) Square box -poly 492.00 492.00 0.00 796.78 729.00 (12.4) 9.30

772.341 729.00 (12.4) 5.95

(7) Square box -plat 486.00 487.50 0.31 741.00 729.00 (12.4) 1.65

(8) Square box open -
plat

486.00 487.50 0.31 11.98 12.00 (12.4) 0.17

(9) Rectang. box -poly 898.67 898.67 0.00 2221.56 2088.64 (12.4) 6.36

2168.441 2088.64 (12.4) 3.82

(9) Rectang. box -plat 891.00 889.17 0.21 2107.31 2088.64 (12.4) 0.89

(10) C-beam -poly 2292.67 2292.67 0.00 12.76 12.67 (12.4) 0.73

(10) C-beam -plat 2286.33 2287.92 0.07 12.67 12.67 (12.4) 0.0

(11) L-beam -poly 180.00 180.00 0.00 6.26 6.33 (12.4) 1.22

(11) L-beam -weld 179.25 180.00 0.42 6.33 6.33 (12.4) 0.0

(11) L-beam -plat 178.62 179.40 0.44 6.33 6.33 (12.4) 0.0

(12) L 100 10 (tabu-
lated)

176.66 177.0 [16] 0.19 6.85 6.33 [17] 8.19

(13) I 100 (tabulated) 170.38 171.0 [16] 0.36 1.52 1.60 [16] 4.93

170.3 [17] 0.05 1.511 [17] 0.67

(14) UPE 100 (tabu-
lated)

206.90 207.0 [16] 0.05 2.02 1.99 [16] 1.56

206.9 [17] 0.00 2.01 [17] 0.55

(15) IPE 400 (tabu-
lated)

23129.58 23130 [16] 0.00 50.50 51.40 [16] 1.75
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Table 12.2: (continued)

y [cm4] |er | T [cm4] |er |

Type SOF. Ref. [%] SOF. Ref. [%]

23128 [17] 0.01 50.41 [17] 0.18

1 Calculated with a finer mesh: HDIV 2[mm]

From the results in Table 12.2 we can see that for the definition of general cross-sections the use of
-POLY option gives the exact values for y. When evaluating the results of the torsional moment of
inertia T , it has to be taken into consideration, that the presented reference solutions in Sect. 12.2,
for all non-circular cross-sections, are approximate and various assumptions are taken according to the
adopted theory. For the case of the I-beam, it is observed in Table 12.2, that the relative error ranges
between 4.99 % and 0.52 %.

For the definition of thin-walled cross-sections the use of -PLAT gives very good results for T whereas for
the determination of y some deviations appear. This is due to the fact that in order for the cross-section
to be connected for shear, some parts of the plates overlap at the connections giving an additional
moment of inertia around the y-axis. This can be seen at Fig. 12.4 for the I beam. It can be avoided if
the -PLAT option is used without overlapping of parts but in combination with -WELD in order to ensure
the proper connection of the plates. This can be seen from the results for the I- and L-beam which are
analysed for the three options -POLY, -PLAT, -PLAT and -WELD.

CSC CSC CSC

-PLAT -PLAT and -WELD-POLY

Figure 12.4: Definition types of I-beam

12.3.1 Comparison of numerical approaches for thick walled cross sections

The torsional moment of inertia is additionally calculated for the thick walled non-circular cross sections
by using the boundary element method (BEM). The computed values are compared with the results
obtained from the FEM method and with the reference values in Table 12.3.

Table 12.3: Torsional moment of inertia calculated by using the boundary element method (BEM) and
the finite element method (FEM)

t [cm4] |er | BEM/FEM

Type SOF. BEM SOF. FEM Ref. [%]

(5) T-beam -poly 6.45 6.37 6.33 (12.4) 1.89/0.63
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Table 12.3: (continued)

t [cm4] |er | BEM/FEM

Type SOF. BEM SOF. FEM Ref. [%]

(6) I-beam -poly 9.52 9.67 9.33 (12.4) 2.00/3.64

9.62 (12.6) 1.04/0.52

9.21 ( 12.5) 3.36/4.99

(7) Square box -poly 771.96 772.341 729.00 (12.4) 5.89/5.94

(9) Rectang. box -poly 2171.77 2168.441 2088.64 (12.4) 3.98/3.82

(10) C-beam -poly 13.29 12.76 12.67 (12.4) 4.90/0.73

(11) L-beam -poly 6.36 6.26 6.33 (12.4) 0.36/1.22

(12) L 100 10 (tabulated) 6.96 6.85 6.33 [17] 9.90/8.19

(13) I 100 (tabulated) 1.51 1.52 1.60 [16] 5.55/4.93

1.511 [17] 0.01/0.67

(14) UPE 100 (tabulated) 2.04 2.02 1.99 [16] 2.76/1.56

2.01 [17] 1.74/0.55

(15) IPE 400 (tabulated) 51.04 50.50 51.40 [16] 0.71/1.75

50.41 [17] 1.24/0.18

1 Calculated with a finer mesh: HDIV 2[mm]

12.3.2 Convergence of the thick walled sections (FEM-BEM) in regard to the
thin-walled theory

The reference values for the open sections I, L, C, T-beam are computed with respect to the thin-walled
theory reference solution (Eq. 12.4). Therefore for the calculated values with -POLY (FEM and BEM),
which do not correspond to the thin-walled theory, deviations appear. If we now make a convergence
study, for the case of the I-beam, decreasing the thickness of the cross-section and comparing it to
the thin-walled reference solution, we will observe that the deviation is vanishing as we approach even
thinner members. This is presented in Fig. 12.5 for an I-beam, where the absolute difference of the
calculated from the reference value is depicted for the decreasing thickness values. The results obtained
with -POLY (FEM) are presented in Fig. 12.5 with three different mesh sizes: default mesh, 25% and
50%finer mesh.
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-POLY finite element method (50% finer mesh)

Figure 12.5: Convergence of I-beam

For the case of open thin-walled non-circular cross-sections, modelled with -PLAT, we can observe that
T matches exactly the reference solution. For closed thin-walled non-circular cross-sections though,
some deviations arise. If we take a closer look at the case of the square box, at first glance it appears to
be not accurate enough, since the calculated value is 741.00 cm4 and the reference is 729.00 cm4

(Table 12.2). The difference between them is 741.00 - 729.00 = 12 cm4, which corresponds to the
reference value of the open square box. This is due to the fact, that the reference solution for this type of
sections given by Eq. 12.3, corresponds to the thin-walled theory and assumes a constant distribution
of shear stresses over the thickness of the cross-section. However, SOFiSTiK assumes a generalised
thin-walled theory, where the shear stresses due to torsion, are distributed linearly across the thickness,
as shown in Fig. 12.6, and thus holds:

Tgenersed thn−ed theory = Tcosed,SOFSTK = Tcosed,thn−ed theory + Topen,thn−ed theory (12.7)

Open Closed

Figure 12.6: Distribution of Stresses
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Eq. 12.7 is satisfied exactly for the square box cross-section and it can be visualised in Fig. 12.7 by
the purple line for decreasing thicknesses, whereas the blue line denotes the deviation of the calculated
values with respect to the Tcosed,thn−ed theory .

For the same cross-section, but now modelled with -POLY, it is evident that the difference from the
reference solution is larger, reaching the value of 5.89 %, as presented by the green line. This is due to
the fact that except from the difference in the stresses consideration, as explained above, the thin-walled
assumption is also engaged. If we do a convergence study for this cross-section, and compared it to the
one modelled with -PLAT, represented by the red line, we will observe that as the thickness decreases
the deviation curves gradually coincide.
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-POLY w.r.t. Thin-walled Theory (4)
-POLY w.r.t. -PLAT
-PLAT w.r.t. Thin-walled Theory (4)
-PLAT w.r.t. Generalised Thin-walled Theory (7)

Figure 12.7: Convergence of Square Box

12.4 Conclusion

This example presents the different cross-sections and their properties according to their definition in
AQUA. It has been shown that the properties of the cross-sections can be adequately captured irrele-
vantly of their definition with small deviations from the exact solution.

12.5 Literature

[5] S. Timoshenko. Strength of Materials, Part I, Elementary Theory and Problems. 2nd. D. Van Nos-
trand Co., Inc., 1940.

[10] C. Petersen. Stahlbau. 2nd. Vieweg, 1990.
[15] K. Holschemacher. Entwurfs- und Berechnungstafeln für Bauingenieure. 3rd. Bauwerk, 2007.
[16] M. Schneider-Bürger. Stahlbau-Profile. 24th. Verlag Stahleisen, 2004.
[17] R. Kindmann, M. Kraus, and H. J. Niebuhr. Stahlbau Kompakt, Bemessungshilfen, Profiltabellen.

Verlag Stahleisen, 2006.

58 VERiFiCATiON - Mechanical Benchmarks | SOFiSTiK 2020



BE9: Verification of Beam and Section Types I

SOFiSTiK 2020 | VERiFiCATiON - Mechanical Benchmarks 59



BE9: Verification of Beam and Section Types I

60 VERiFiCATiON - Mechanical Benchmarks | SOFiSTiK 2020



BE10: Verification of Beam and Section Types II

13 BE10: Verification of Beam and Section Types II

Overview

Element Type(s): B3D

Analysis Type(s): STAT

Procedure(s):

Topic(s):

Module(s): ASE

Input file(s): cross sections ii FEM.dat, cross sections ii BEM.dat

13.1 Problem Description

The problem consists of a cantilever beam as shown in Fig. 13.1. For the first case analysed, a trans-
verse load is applied at the end of the beam. For the second case, a moment is applied around the 
axis. The various cross-section types analysed in Benchmark Example 9 are used, in order to test the
behaviour of the beam associated with each of the section definitions.

P

−→ || ←− 

M

Figure 13.1: Problem Description

13.2 Reference Solution

For a Bernoulli beam and a linear elastic material behaviour, the maximum deflection δm of the can-
tilever, under the action of a transverse load P, occurs at the tip and is [15]:

δm =
PL3

3E
, (13.1)

and the rotation ϕz

ϕz =
PL2

2E
. (13.2)

For the case of the moment M, applied at the -axis the angle of twist ϕ is [10]:

ϕ =
ML

GT
, (13.3)

where G is the shear modulus, E the flexural rigidity and T the torsional moment.
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13.3 Model and Results

The properties of the model and the cross-sections analysed, are defined in Table 13.1. For all cross-
sections the shear deformation areas Ay and Az are given equal to zero, in order to consider a Bernoulli
beam formulation which doesn’t account for shear deformations.

Table 13.1: Model Properties

Material Properties Cross-sectional
Properties

Loading

E = 30MP L = 1m P = 1 kN

ν = 0.3 h = 100mm M = 1 kNm

t = 10mm

b = 100mm

D = 100mm

Table 13.2: Results Case 1

y [m] |er | ϕz [mrd] |er |

Type SOF. Ref. [%] SOF. Ref. [%]

square -srec 1.333 1.333 0.00 2.000 2.000 0.00

rectangular -srec 1333.333 1333.333 0.00 2000.000 2000.000 0.00

circul -scit 2.264 2.264 0.00 3.395 3.395 0.00

circul -tube 2.264 2.264 0.00 3.395 3.395 0.00

pipe -scit 3.834 3.834 0.00 5.751 5.751 0.00

pipe -tube 3.834 3.834 0.00 5.751 5.751 0.00

Tbeam -poly 6.173 6.173 0.00 9.259 9.259 0.00

Tbeam -plat 6.126 6.078 0.80 9.189 9.116 0.80

Ibeam -poly 2.473 2.473 0.00 3.709 3.709 0.00

Ibeam -plat 2.386 2.377 0.36 3.578 3.566 0.36

Ibeam -weld 2.482 2.473 0.37 3.723 3.709 0.37

square box -poly 2.258 2.258 0.00 3.388 3.388 0.00

square box -plat 2.286 2.279 0.31 3.429 3.419 0.31

square box open -plat 2.286 2.279 0.31 3.429 3.419 0.31

rectang. box -poly 1.236 1.236 0.00 1.855 1.855 0.00

rectang. box -plat 1.247 1.250 0.21 1.871 1.874 0.21

C-beam -poly 0.485 0.485 0.00 0.727 0.727 0.00
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Table 13.2: (continued)

y [m] |er | ϕz [mrd] |er |

Type SOF. Ref. [%] SOF. Ref. [%]

C-beam -plat 0.486 0.486 0.07 0.729 0.728 0.07

L-beam -poly 6.173 6.173 0.00 9.259 9.259 0.00

L-beam -weld 6.199 6.173 0.42 9.298 9.259 0.42

L-beam -plat 6.221 6.193 0.44 9.331 9.290 0.44

The cross-sections types are modelled in various ways in AQUA as shown in Benchmark Example 9.
The results are presented in Table 13.2 for the case of the transverse load P and in Table 13.3 for
the case of the moment M. For the non-circular cross sections modelled with -POLY, both the results
calculated with the boundary element method (BEM) and the finite element method (FEM) are presented
in Table 13.3. It should be noted, that the calculated angle of twist for the square and rectangular box
cross section modelled with -POLY (FEM), denoted with a star in Table 13.3, corresponds to a relatively
coarse default finite element mesh. For the investigated box sections with relatively thin walls, a better
approximation in regard to the reference values can be obtained by implementing a finer element mesh.

Table 13.3: Results Case 2

ϕ [mrd] |er |

Type SOF. Ref. [%]

square -srec 6.165 6.190 0.41

rectangular -srec 2774.886 2768.903 0.22

circul -scit 8.828 8.828 0.00

circul -tube 8.828 8.828 0.00

pipe -scit 14.952 14.952 0.00

pipe -tube 14.952 14.952 0.00

Tbeam -poly (BEM) 1343.070 1368.421 1.85

Tbeam -poly (FEM) 1359.899 0.62

Tbeam -plat 1333.333 1333.333 0.00

Ibeam -poly (BEM) 910.375 928.571 1.96

Ibeam -poly (FEM) 895.95 3.51

Ibeam -plat 896.552 896.552 0.00

Ibeam -weld 928.571 928.571 0.00

square box -poly (BEM) 11.227 11.888 5.56

square box -poly (FEM - default mesh) 10.877? 8.51

square box -poly (FEM - finer mesh: HDIV 2 [mm]) 11.221 5.61
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Table 13.3: (continued)

ϕ [mrd] |er |

Type SOF. Ref. [%]

square box -plat 11.696 11.888 1.62

square box open -plat 723.428 722.222 0.17

rectang. box -poly (BEM) 3.991 4.149 3.83

rectang. box -poly (FEM - default mesh) 3.901? 5.98

rectang. box -poly (FEM - finer mesh: HDIV 2 [mm]) 3.998 3.64

rectang. box -plat 4.113 4.149 0.89

C-beam -poly (BEM) 652.274 684.211 4.67

C-beam -poly (FEM) 679.255 0.72

C-beam -plat 684.210 684.211 0.00

L-beam -poly (BEM) 1363.46 1368.421 0.36

L-beam -poly (FEM) 1385.289 1368.421 1.23

L-beam -weld 1368.421 1368.421 0.00

L-beam -plat 1368.421 1368.421 0.00

From the above results, and with respect to the results of Benchmark Example 9, we can see that the
differences are a direct influence of the calculations of the properties of the cross-sections according to
their definition in AQUA, and are not associated to the beam formulation. This can also be verified, if
instead of, e.g. the reference value for yREF , the calculated value is used yCALC in Eq. 13.1 . Then the
error is eliminated for all the cross-sections types.

13.4 Conclusion

This example presents the influence of the cross-sections types, for the case of a simple cantilever
beam. It has been shown that the behaviour of the beam is accurately captured.

13.5 Literature

[10] C. Petersen. Stahlbau. 2nd. Vieweg, 1990.
[15] K. Holschemacher. Entwurfs- und Berechnungstafeln für Bauingenieure. 3rd. Bauwerk, 2007.
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14 BE11: Plastification of a Rectangular Beam

Overview

Element Type(s): B3D, BF2D, SH3D

Analysis Type(s): STAT, MNL

Procedure(s): LSTP

Topic(s):

Module(s): ASE, STAR2, TALPA

Input file(s): beam star2.dat, fiber beam.dat, quad.dat

14.1 Problem Description

The problem consists of a rectangular cantilever beam, loaded in pure bending as shown in Fig. 14.1.
The model [18] is analysed for different load levels, including the capacity limit load, where the cross-
section fully plastifies. The beam is modelled and analysed with different elements and modules.

Myed

| ←−  −→ |

Figure 14.1: Problem Description

14.2 Reference Solution

The model follows an elastic-perfectly-plastic stress-strain behaviour as shown in Fig. 14.2. Under this
assumption, the beam remains elastic until the outermost fibers reach the yield stress. The correspond-
ing limit load can be calculated as:

Myed =
σyed bh2

6
, (14.1)

where σyed is the yield stress, b and h the dimensions of the beam. The cross-section fully plastifies
when the load reaches M = Mt = 1.5×Myed, where all fibers of the beam are in condition of yielding
[6].

σyed

−σyed

ε

σ

Figure 14.2: Stress-Strain Curve
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14.3 Model and Results

The properties of the model are defined in Table 14.1. A standard steel material is used and modified
accordingly to account for the intended elastic-perfectly-plastic material behaviour.

Table 14.1: Model Properties

Material Properties Geometric Properties Loading

E = 210000MP L = 1m Myed = 280Nm

ν = 0.3 h = 20mm

σyed = 420MP b = 10mm

The structure is modelled and analysed in various ways. For the first case the fiber beam is used
(TALPA), where the cross-section is discretised into single fibers and directly integrates the continuum
mechanical material reaction into beam theory, and physically nonlinear analysis is performed. For the
second case the standard beam elements are used and the model is analysed with STAR2 where a
nonlinear stress and strain evaluation determination is performed. For the third case, the quad elements
are used and a nonlinear analysis is done with ASE. The results are presented in Table 14.2 for the
three cases.

Table 14.2: Results

M/Myed Fiber Beam Standard Beam Quad Ref.

σ [MP] σ [MP] σ σeƒ ƒ

0.99
415.80 415.80 415.80 415.80 σ < 420.00

Fully Elastic

1.00
≤ 420 ≤ 420 ≤ 420 ≤ 420 σ ≤ 420.00

First Yield

1.48
≤ 420 ≤ 420 ≤ 431.0 ≤ 420 σ ≤ 420.00

Elastic-Plastic

1.50
Fully-Plastic Fully-Plastic Fully-Plastic σ = 420.00

No Convergence No Convergence Fully-Plastic

1.51
Fully-Plastic Fully-Plastic Fully-Plastic Fully-Plastic

No Convergence No Convergence No Convergence No Convergence

This benchmark is designed to test elastic-plastic material behaviour under uniaxial loading conditions.
From the above results, it is evident that both beam element formulations adequately reproduce the
intended behaviour. Fig. 14.3 shows the distribution of stresses for the case of the fiber beam with
M/Myed = 0.99, 1.0 and 1.5. For the quad element, the stress appears to exceed the limit value of
420MP. This is due to the fact that, as the plasticity involves at the cross-section, plastic strains also
appear in the lateral direction. This causes a biaxial stress state, which is not neglected by the quad
formulation, as shown in Fig. 14.4 for M/Myed = 1.0 and 1.48. A closer look at the list of results
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though, reveals that the eƒ ƒecte stresses do not exceed the σyed.
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Figure 14.3: Fiber Beam Stress State

                 

 

 

 

                                     

 

 

 

         

Figure 14.4: Quad Stress State

14.4 Conclusion

This example presents the pure bending of beams beyond their elastic limit for a non elastic material. It
has been shown that the behaviour of the beam is accurately captured for all three modelling options.

14.5 Literature

[6] S. Timoshenko. Strength of Materials, Part II, Advanced Theory and Problems. 2nd. D. Van Nos-
trand Co., Inc., 1940.

[18] Verification Manual for the Mechanical APLD Application, Release 12.0. Ansys, Inc. 2009.
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15 BE12: Cantilever in Torsion

Overview

Element Type(s): B3D

Analysis Type(s): STAT, GNL

Procedure(s):

Topic(s):

Module(s): ASE

Input file(s): torsion.dat

15.1 Problem Description

The problem consists of a cantilever beam as shown in Fig. 15.1. The tip of the cantilever is offsetted in
y-direction by Δy = /200 = 2.5 cm, creating a geometrical imperfection. The beam is loaded with a
transverse force Pz and an axial force P. The imperfection acts as a lever arm for the loading, causing
a torsional moment. The torsional moment at the support with respect to the local and global coordinate
system is determined.

Pz

P

Δy

z y



Figure 15.1: Problem Description

15.2 Reference Solution

In order to account for the effect of the geometrical imperfection on the structure, second-order theory
should be used, where the equilibrium is established at the deformed system. According to the equilib-
rium of moments at the deformed system, with respect to the global -axis, the torsional moment at the
support Mgob is:

Mgob = Pz (y + Δy) − Py z , (15.1)

whereas by the local -axis the torsional moment Moc is:

Moc = Pz y + P (
Δy


) z , (15.2)

where  is the length of the beam, Δy the initial geometrical imperfection and P is negative for compres-
sion.
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15.3 Model and Results

The properties of the model [19] [20] are defined in Table 15.1. A standard steel material is used as well
as a standard hot formed hollow section with properties according to DIN 59410, DIN EN 10210-2. A
safety factor γM = 1.1 is used, which according to DIN 18800-2 it is applied both to the yield strength
and the stiffness. Furthermore, the self weight, the shear deformations and the warping modulus CM
are neglected. At the support the warping is not constrained.

Table 15.1: Model Properties

Material Properties Geometric Properties Loading

S 355  = 5m Pz = 10 kN

γM = 1.1 RRo/SH 200 × 100 × 10 [15] P = 100 kN

CM = 0 Δy = 2.5 cm

Table 15.2: Results

y z Mgob Moc Pbck

[cm] [cm] [kNcm] [kNcm] [kN]

SOF. 3.209 10.204 57.08 26.98 163.7

Ref.[21] 3.20 10.2 57.0 26.9 164

The corresponding results are presented in Table 15.2. Figure 15.2 shows the deformed shape of the
structure and the nodal displacements for the z and y direction. From the presented results, we can
observe that the values of the moments are correctly computed. Here has to be noted that the reference
results are according to [19], where they are computed with another finite element software, and not with
respect to an analytical solution.

[y]

[z]

Figure 15.2: Deformations [mm]
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15.4 Conclusion

This example presents a case where torsion is induced to the system because of an initial geometrical
imperfection. It has been shown that the behaviour of the beam is captured accurately.

15.5 Literature

[15] K. Holschemacher. Entwurfs- und Berechnungstafeln für Bauingenieure. 3rd. Bauwerk, 2007.
[19] V. Gensichen and G. Lumpe. Zur Leistungsfähigkeit, korrekten Anwendung und Kontrolle

räumlicher Stabwerksprogramme. Stahlbau Seminar 07.
[20] V. Gensichen. Zur Leistungsfähigkeit räumlicher Stabwerksprogramme, Feldstudie in Zusamme-

narbeit mit maßgebenden Programmherstellern. Stahlbau Seminar 07/08.
[21] V. Gensichen and G. Lumpe. “Zur Leistungsfähigkeit, korrekten Anwendung und Kontrolle von

EDV-Programmen für die Berechnung räumlicher Stabwerke im Stahlbau”. In: Stahlbau 77 (Teil 2)
(2008).

SOFiSTiK 2020 | VERiFiCATiON - Mechanical Benchmarks 71



BE12: Cantilever in Torsion

72 VERiFiCATiON - Mechanical Benchmarks | SOFiSTiK 2020



BE13: Buckling of a Bar with Hinged Ends I

16 BE13: Buckling of a Bar with Hinged Ends I

Overview

Element Type(s): B3D

Analysis Type(s): STAT, GNL

Procedure(s): STAB

Topic(s):

Module(s): ASE

Input file(s): buckling bar.dat

16.1 Problem Description

The problem consists of an axially loaded long slender bar of length  with hinged ends, as shown in Fig.
16.1. Determine the critical buckling load. [18]

P

P

y




P

y



/2

Figure 16.1: Problem Description

16.2 Reference Solution

The problem of lateral buckling of bars is examined here. The case of a bar with hinged ends is very often
encountered in practical applications and is called the ƒndment case of buckling of a prismatic
bar. For the case of an axially compressed bar there is a certain critical value of the compressive force
at which large lateral deflection may be produced by the slightest lateral load. For a prismatical bar with
hinged ends (Fig. 16.1) this critical compressive force is [6]:

Pcr =
π2E

(β)2
=
π2E

2
, (16.1)

where  is the full length of the bar, E its flexural rigidity and β the effective length coefficient, whose
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value depends on the conditions of end support of the bar. For the fundamental case, β = 1. If the
load P is less than its critical value the bar remains straight and undergoes only axial compression.
This straight form of elastic equilibrium is stable, i.e., if a lateral force is applied and a small deflection
is produced this deflection disappears when the lateral load is removed and the bar becomes straight
again. By increasing P up to the critical load causes the column to be in a state of unstable equilibrium,
which means, that the introduction of the slightest lateral force will cause the column to undergo large
lateral deflection and eventually fail by buckling.

16.3 Model and Results

Only the upper half of the bar is modelled because of symmetry (Fig. 16.1). The boundary conditions
thus become free-fixed for the half symmetry model. A total of 20 elements are used to capture the
buckling mode. The properties of the model are defined in Table 16.1.

Table 16.1: Model Properties

Material Properties Geometric Properties Loading

E = 300MP  = 20m Py = 1 kN

h = 0.5m P << 1 kN

A = 0.25m2

 = 5.20833 × 10−3m4

β = 2, free-fixed ends

Node 100

ux [mm]

14
.0

00

12
.0

00

10
.0

00

8.
00

0

6.
00

0

4.
00

0

2.
00

0

0.
00

0
0.

00
0

factor

30.0

20.0

10.0

0.0

Figure 16.2: Load-Deflection curve

A small horizontal load at the top is necessary in order to induce an initial horizontal displacement. It
should be sufficiently large to cause a nonlinear iteration, but it should not affect the result unintentionally.
A buckling eigenvalue determination is performed where the critical load factor is calculated. The results
are presented in Table 16.2. Moreover, an ultimate limit load iteration is done and the produced Load-
Deflection curve is shown in Fig. 16.2, as well as a part of the iteration summary.

74 VERiFiCATiON - Mechanical Benchmarks | SOFiSTiK 2020



BE13: Buckling of a Bar with Hinged Ends I

Table 16.2: Results

SOF. Ref.

Pcr [kN] 38.553 38.553

16.4 Conclusion

This example presents the buckling of slender bars. It has been shown that the buckling properties of
the bar are accurately captured.

16.5 Literature

[6] S. Timoshenko. Strength of Materials, Part II, Advanced Theory and Problems. 2nd. D. Van Nos-
trand Co., Inc., 1940.

[18] Verification Manual for the Mechanical APLD Application, Release 12.0. Ansys, Inc. 2009.
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17 BE14: Buckling of a Bar with Hinged Ends II

Overview

Element Type(s): SH3D

Analysis Type(s): STAT, GNL

Procedure(s): STAB

Topic(s):

Module(s): ASE

Input file(s): buckling bar quad.dat

17.1 Problem Description

Benchmark Example 13 is tested here for QUAD plane elements. The problem consists of an axially
loaded long slender bar of length  with hinged ends, as shown in Fig. 17.1. Determine the critical
buckling load [18].

P

P

z




P/2P/2

z



/2

Figure 17.1: Problem Description

17.2 Reference Solution

The problem of lateral buckling of bars is presented at Benchmark Example 13. For a prismatic bar, the
critical load is [6]:

Pcr =
π2E

(β)2
. (17.1)

From the above equation it is evident, that the critical load does not depend upon the strength of the
material but only upon the dimensions of the structure and the modulus of elasticity of the material. Two
equal slender axially compressed bars, will buckle at the same compressive force, if they consist of the
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same flexural rigidity and material with the same Young’s modulus.

17.3 Model and Results

Only the upper half of the bar is modelled because of symmetry (Fig. 17.1). The boundary conditions
thus become free-fixed for the half symmetry model. A total of 20 elements are used to capture the
buckling mode. The properties of the model are defined in Table 17.1.

Table 17.1: Model Properties

Material Properties Geometric Properties Loading

E = 300MP  = 20m , h = 0.5m P = 1 kN

A = 0.25m2 P << 1 kN

t = 0.5m

 = 5.20833 × 10−3m4

β = 2, free-fixed ends

A buckling eigenvalue determination is performed where the critical load factor is calculated. Result
of the eigenvalue calculation are presented in Table 17.2. The reference value of the critical load for
Benchmark Example 13 and 14 is calculated the same, since the properties of the two models are
equivalent, as explained in Section 17.2.

Table 17.2: Results

Solver Pcr [kN] Ref. |er | [%]

BUCK - Simultaneous vector iteration 38.539 38.553 0.0379

17.4 Conclusion

This example presents the buckling of slender bars. It has been shown that the buckling properties of
the bar are accurately captured also with QUAD elements.

17.5 Literature

[6] S. Timoshenko. Strength of Materials, Part II, Advanced Theory and Problems. 2nd. D. Van Nos-
trand Co., Inc., 1940.

[18] Verification Manual for the Mechanical APLD Application, Release 12.0. Ansys, Inc. 2009.
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18 BE15: Flexural and Torsional Buckling

Overview

Element Type(s): B3D

Analysis Type(s): STAT, GNL

Procedure(s): STAB

Topic(s):

Module(s): ASE

Input file(s): flex tors buckling.dat

18.1 Problem Description

The problem consists of a standard I-beam, subjected to a compressive load P and supported as shown
in Fig. 18.1. The flexural and torsional buckling load is determined.

P

Figure 18.1: Problem Description

18.2 Reference Solution

For the rolled steel profiles, such as PE 300, the torsional buckling is generally only decisive, when the
buckling length for torsional buckling sθ is significantly larger than the one for the flexural buckling sz, and
at the same time the slenderness ratio is low [19]. The analysed model fulfils the above prerequisites.
The flexural buckling load is:

Pbckz =
π2 Ez

s2
z
γM

, (18.1)

whereas the torsional buckling load is:
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Pbckθ =
1

2
m
γM

�

GT +
π2 ECM

s2θ

�

, (18.2)

where Ez the flexural rigidity, CM the warping modulus, γM a safety factor, G the shear modulus, T the
torsional moment and M is the polar radius of gyration calculated as following:

M =
y + z
A

. (18.3)

18.3 Model and Results

The properties of the model [19] are defined in Table 18.1. A standard steel material is used, as well as
a standard rolled steel profile with properties according to DIN 1025-5. A safety factor γM = 1.1 is used,
which according to DIN 18800-2 it is applied both to the yield strength and the stiffness. Furthermore, the
self weight and the shear deformations are neglected. At all the supports the warping is not constrained.

Table 18.1: Model Properties

Material Properties Geometric Properties Loading

S 355 sθ = 5 or 6m P = 600 kN

γM = 1.1 sz = 2.5 or 3m

CM = 125900 cm6 PE 300 [15]

y = 8360 cm4

z = 604 cm4

A = 53.81 cm2

The corresponding results are presented in Table 18.2. Figure 18.2 shows the deformed shape of the
structure for the first and second buckling eigenvalues. It is obvious that the first one corresponds to the
torsional buckling while the second one to the flexural.

Table 18.2: Results

sθ = 5.0 [m] / sz = 2.5 [m] sθ = 6.0 [m] / sz = 3.0 [m]

Pbckz [kN] Pbckθ [kN] Pbckz [kN] Pbckθ [kN]

SOF. 1820.92 1462.87 1264.53 1288.78

Exact 1820.89 1462.87 1264.51 1288.78

Ref. [21] 1818 1459 1264 1285
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Figure 18.2: Buckling Eigenvalues

18.4 Conclusion

This example presents the determination of torsional and flexural buckling loads. It has been shown that
the behaviour of the beam is captured accurately.

18.5 Literature

[15] K. Holschemacher. Entwurfs- und Berechnungstafeln für Bauingenieure. 3rd. Bauwerk, 2007.
[19] V. Gensichen and G. Lumpe. Zur Leistungsfähigkeit, korrekten Anwendung und Kontrolle

räumlicher Stabwerksprogramme. Stahlbau Seminar 07.
[21] V. Gensichen and G. Lumpe. “Zur Leistungsfähigkeit, korrekten Anwendung und Kontrolle von

EDV-Programmen für die Berechnung räumlicher Stabwerke im Stahlbau”. In: Stahlbau 77 (Teil 2)
(2008).
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19 BE16: Torsion due to Biaxial Bending

Overview

Element Type(s): B3D

Analysis Type(s): STAT, GNL

Procedure(s):

Topic(s):

Module(s): ASE

Input file(s): torsion bending.dat

19.1 Problem Description

The problem consists of a beam subjected to transverse load Pz and a lateral load Py, as shown in Fig.
19.1. The effect of torsion due to biaxial bending is examined.

Pz

Py

z
y


Figure 19.1: Problem Description

19.2 Reference Solution

For an I-beam subjected to biaxial bending, without the action of a normal force, it follows directly from
the beam theory that a torsional moment will inevitably appear, even if the cross-section is double sym-
metric, the load is centrically applied, and the beam is statically determined. In order to account for this
effect, third order theory has to be utilised.

19.3 Model and Results

The properties of the model [19] are defined in Table 19.1. A standard steel material is used as well as
a cross-section with a standard rolled steel shape. A safety factor γM = 1.1 is used, which according to
DIN 18800-2 it is applied both to the yield strength and the stiffness. Furthermore, the self weight and
the shear deformations are neglected. At the supports the warping is not constrained.

Table 19.1: Model Properties

Material Properties Geometric Properties Loading

S 355  = 5m Pz = 20 kN
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Table 19.1: (continued)

Material Properties Geometric Properties Loading

γM = 1.1 PE 300 [17] [22] Py = 4 kN

CM = 125900 cm6

The results are presented in Table 19.2. It has to be noted that the reference results are according to
[19] and [21], where they are computed with another finite element software, and not with respect to an
analytical solution.

Table 19.2: Results

max | | CM = 125900 [cm6] Ref. [19] CM = 0 Ref. [19]

ϕ [rd] 0.0316 0.0315 0.0321 0.0321

M [kNm] 0.183 0.185 0.185 0.189

My [kNm] 24.88 24.9 24.85 24.9

Mz [kNm] 5.57 5.6 5.71 5.7

19.4 Conclusion

This example presents a case where torsion is induced to the system because of biaxial bending. It has
been shown that the behaviour of the beam is captured accurately.

19.5 Literature

[17] R. Kindmann, M. Kraus, and H. J. Niebuhr. Stahlbau Kompakt, Bemessungshilfen, Profiltabellen.
Verlag Stahleisen, 2006.

[19] V. Gensichen and G. Lumpe. Zur Leistungsfähigkeit, korrekten Anwendung und Kontrolle
räumlicher Stabwerksprogramme. Stahlbau Seminar 07.

[21] V. Gensichen and G. Lumpe. “Zur Leistungsfähigkeit, korrekten Anwendung und Kontrolle von
EDV-Programmen für die Berechnung räumlicher Stabwerke im Stahlbau”. In: Stahlbau 77 (Teil 2)
(2008).

[22] R. Kindmann. “Neue Berechnungsformel für das IT von Walzprofilen und Berechnung der Schub-
spannungen”. In: Stahlbau 75 (2006).
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20 BE17: Lateral Torsional Buckling

Overview

Element Type(s): B3D

Analysis Type(s): STAT, GNL

Procedure(s):

Topic(s):

Module(s): ASE

Input file(s): lateral torsional buckling.dat

20.1 Problem Description

The problem consists of a single span beam with an initial geometrical imperfection at the middle, sub-
jected to a uniformly distributed load qz, as shown in Fig. 20.1. The structure is examined for lateral
torsional buckling.

| ←−  −→ |



y



z Δy

Total System

Δy

Equivalent System

| ←− /2 −→ |

qz

Model

zp = −20 cm

Figure 20.1: Problem Description

20.2 Reference Solution

The I-beam of Fig. 20.1 has an initial geometrical imperfection in the y-direction Δy = /200 = 3.0 cm.
Using the symmetry of the equivalent system the model can be reduced to half as shown at Fig. 20.1.
Due to the bending moments, the load application on the upper flange of the beam (zp) and the imper-
fection, the beam is at risk for lateral torsional buckling. In order to account for this effect, third order
theory has to be utilised.

20.3 Model and Results

The properties of the model [19] are defined in Table 20.1. A standard steel material is used as well
as a standard rolled steel profile with properties according to DIN 1025-5. A safety factor γM = 1.1
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is used, which according to DIN 18800-2 it is applied both to the yield strength and the stiffness. The
loading is applied at the upper flange as shown in Fig. 20.1. Furthermore, the self weight and the shear
deformations are neglected. At the supports the warping is not constrained.

Table 20.1: Model Properties

Material Properties Geometric Properties Loading

S 355 , γM = 1.1  = 6m , Δy = 3 cm qz = 10 kN/m

CM = 490000 cm6 PE 400 [15] zp = −20 cm

The results are presented in Table 20.2. It is observed that second-order theory (TH. II) fails to capture
the moments with respect to the z-axis, therefore third-order theory (TH. III) has to be used. It has to
be noted that the reference results are according to [19], where they are computed with another finite
element software, and not with respect to an analytical solution.

Table 20.2: Results

CM = 490000 [cm6] Ref. [19] CM = 0 Ref. [19]

TH. II TH. III TH. II TH. III

y [cm] 0.094 0.082 0.089 0.184 0.158 0.172

z [cm] 0.422 0.425 0.424 0.470 0.479 0.475

ph [rd] 0.0167 0.0166 0.0167 0.0367 0.0363 0.0365

M [kNm] 0.439 0.437 0.438 0.510 0.504 0.508

My [kNm] 45.0 45.0 45.0 45.0 45.0 45.0

Mz [kNm] 0.001 0.747 0.752 0.001 1.627 1.641

Mω [kNm] 0.606 0.604 0.607 0.0 0.0 0.0

20.4 Conclusion

This example examines the lateral torsional buckling of beams. It has been shown that the behaviour of
the beam is captured accurately.

20.5 Literature

[15] K. Holschemacher. Entwurfs- und Berechnungstafeln für Bauingenieure. 3rd. Bauwerk, 2007.
[19] V. Gensichen and G. Lumpe. Zur Leistungsfähigkeit, korrekten Anwendung und Kontrolle

räumlicher Stabwerksprogramme. Stahlbau Seminar 07.
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21 BE18: Three-storey Column under Large Compres-
sive Force and Torsional Moment

Overview

Element Type(s): B3D

Analysis Type(s): STAT, GNL

Procedure(s):

Topic(s):

Module(s): ASE, DYNA

Input file(s): three storey column.dat

21.1 Problem Description

The problem consists of a three-storey column, subjected to a large compressive axial force N and a
torsional moment Mt at the middle, as shown in Fig. 21.1. The rotation and twisting as well as the
torsional moments of the structure are determined.

/2

Mt

N

/2/2

Figure 21.1: Problem Description

21.2 Reference Solution

A large axial compressive force is applied to the column of Fig. 21.1, in combination with a torsional
moment at the middle, which can cause warping and potentially buckling of the structure. In order to
account for this effect, second order theory has to be utilised. The total torsional moment MT is given as
a sum of the different torsional parts, the primary, secondary and third respectively:

∑

M = MT = MT1 + MT2 + MT3 , (21.1)
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where

MT1 = G T ϕ
′
, (21.2)

MT2 = − E CM ϕ
′′′
, (21.3)

MT3 = N 2p ϕ
′
, (21.4)

and the warping moment

Mω = − E CM ϕ
′′
. (21.5)

where G is the shear modulus, T the torsional moment of inertia, p the polar radius of gyration and
ECM the warping torsion stiffness. Introducing the above into Eq. 21.1 we have:

�

G T + N 2
p

�

ϕ
′
− E CM ϕ

′′′
= MT =

∑

M. (21.6)

21.3 Model and Results

The properties of the model [23] are defined in Table 21.1. A standard steel material is used and an
I-beam profile for the cross-section. A safety factor γM = 1.1 is used, which according to DIN 18800-2
it is applied both to the yield strength and the stiffness. At the supports the warping is not constrained.
The cross-sectional properties given in Table 21.1 are the values calculated by SOFiSTiK, matching the
analytical solution, except from the torsional moment T and the warping modulus CM which are modified
to match the values of the reference example. This modification is done only for the sake of comparison
and it has to be noted that the reference results [23] are computed with another finite element software,
and not with respect to an analytical solution.

Table 21.1: Model Properties

Material Properties Geometric Properties Loading

γM = 1.1 b = 180mm N = 1712 kN

 = 6m h = 400mm Mt = 272 kN cm

S 355 teb = 10mm

tƒ nge = 14mm

CM = 506884 cm6

y = 23071.6 cm4

z = 1363.9 cm4

T = 44.18 cm4

The results are presented in Table 21.2 and Fig 21.2. The value of MT3 is not given in the Reference
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[23], but according to Eq. 21.4 is computed as −721 kNcm, which matches the calculated value by
SOFiSTiK. If we now sum the torsional moment parts, it is observed that Eq. 21.1 is satisfied and that
the total torsional moment at  = 0 is 136 kNcm.

Table 21.2: Results

SOF. Ref.[23]

ϕ [mrd] ( = /2) 294.4 294

ϕ
′

[mrd/cm] ( = 0; = ) 1.5096 1.50965

MT1 [kN cm] ( = 0) 491 491

MT2 [kN cm] ( = 0) 366 366

MT3 [kN cm] ( = 0) −721 -

MT [kN cm] ( = 0) 136 136

Mω [kN cm] 85583 85620

MT1 [kNm]MT2 [kNm] MT [kNm]

Figure 21.2: Results [kNm]

21.4 Conclusion

This example examines the torsional behaviour of the beam and the different parts involved in the cal-
culation of the total torsional moment. The results are reproduced accurately.

21.5 Literature

[23] V. Gensichen and G. Lumpe. Anmerkungen zur linearen und nichtlinearen Torsionstheorie im
Stahlbau. Stahlbau Seminar 2012.
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22 BE19: Two-span Beam with Warping Torsion and
Compressive Force

Overview

Element Type(s): B3D

Analysis Type(s): STAT, GNL

Procedure(s):

Topic(s):

Module(s): ASE, DYNA

Input file(s): two span beam.dat

22.1 Problem Description

The problem consists of a two-span beam, subjected to a large compressive axial force N2 at its right
end node, as well as a torsional momentMt at the middle and an additional axial force N1 in the middle of
the right span, as shown in Fig. 22.1. The structure is examined for its torsional and warping behaviour.

/2

10901 2 3 4

/4/4

N1 N2MT

Figure 22.1: Problem Description

22.2 Reference Solution

While in first order theory, the axial force has no effect in the torsional deformations and moments, in
second order torsional theory, the influence of the axial force in the rotation and twisting is considered.
From the formulation of the equilibrium conditions at the twisted element, the torsional moment part
MT3 results, which covers the contribution of the axial force in the total torsional moment. Therefore
second order theory is utilised here, in order to account for the torsional effect of the axial force, as
well as the warping torsion arising from the application of the torsional moment and the axial force at
the intermediary nodes of the beam. The total torsional moment MT is given as a sum of the different
torsional parts, the primary, secondary and third respectively:

∑

M = MT = MT1 + MT2 + MT3 , (22.1)

where

MT1 = G T ϕ
′
, (22.2)

MT2 = − E CM ϕ
′′′
, (22.3)
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MT3 = N 2p ϕ
′
, (22.4)

and the warping moment

Mω = − E CM ϕ
′′
. (22.5)

where G is the shear modulus, T the torsional moment of inertia, p the polar radius of gyration and
ECM the warping torsion stiffness. Introducing the above into Eq. 22.1 we have:

�

G T + N 2
p

�

ϕ
′
− E CM ϕ

′′′
= MT =

∑

M. (22.6)

22.3 Model and Results

The properties of the model [23] are defined in Table 22.1. A standard steel material is used and an
I-beam profile for the cross-section. A safety factor γM = 1.1 is used, which according to DIN 18800-2
it is applied both to the yield strength and the stiffness. At the supports the warping is not constrained.
The cross-sectional properties, given in Table 22.1, are the values calculated by SOFiSTiK, matching
the reference solution, except from the torsional moment T and the warping modulus CM, which are
modified to match the values of the reference example. This modification is done only for the sake
of comparison and it has to be noted that the reference results [23] are computed with another finite
element software, and not with respect to an analytical solution. The results are presented in Table 22.2,
22.3 and Fig 22.2. The double result values given for some nodes, e.g. 309/308, indicate the value left
and right of the node respectively, and the exact result lies in between. When ’—’ is used, it indicates a
change in the moment diagram.

Table 22.1: Model Properties

Material Properties Geometric Properties Loading

γM = 1.1 b = 180mm , h = 400mm N1 = 200 kN

 = 6m teb = 10mm , tƒ nge = 14mm N2 = 1600 kN

S 355 y = 23071.6cm4 , z = 1363.9cm4 Mt = 280 kN cm

CM = 506900 cm6

T = 45.00 cm4

Table 22.2: Torsional Deformation Results

Node 1 Node 2

SOF. Ref.[23] SOF. Ref.[23]

ϕ [mrd] - - 294 294

ϕ
′

[rd/cm] 1.525 1.52 - -
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Table 22.3: Torsional Moment Results

Node MT [kNcm] MT1 [kNcm] MT2 [kNcm] MT3 [kNcm] Mω [kNm2]

1
SOF. 121 505 382 −766 0

Ref. [23] 121 505 382 −766 0

1090
SOF. 121 363 309/308 −550/ − 550 5.35

Ref. [23] 121 363 308 −550 5.35

2
SOF. 121| − 159 −9 118| − 165 13/13 8.65

Ref. [23] 121| − 159 −9 117| − 163 14 8.65

3
SOF. −159 −364 −345| − 285 551|490 4.70

Ref. [23] −159 −363 −346| − 285 551|490 4.70

4
SOF. −159 −487 −328 656 0

Ref. [23] −159 −487 −328 656 0

Mω [kNm2]

MT1 [kNm]

MT2 [kNm]

MT [kNm]

Figure 22.2: Results

In reference [23], except from the second order theory, the example is also analysed with respect to
geometrically nonlinear torsional theory which accounts additionally for the large torsional deformations.
This is done by introducing an additional torsional moment part, the helix torsional moment MTH. The
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results of both analysis are compared, leading to the conclusion that second order theory lies almost
always to the safe side.

22.4 Conclusion

This example examines the torsional behaviour of the beam and the different parts involved in the cal-
culation of the total torsional moment. The results are reproduced accurately.

22.5 Literature

[23] V. Gensichen and G. Lumpe. Anmerkungen zur linearen und nichtlinearen Torsionstheorie im
Stahlbau. Stahlbau Seminar 2012.
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23 BE20: Passive Earth Pressure I

Overview

Element Type(s): C2D

Analysis Type(s): STAT, MNL

Procedure(s): LSTP

Topic(s): SOIL

Module(s): TALPA

Input file(s): passive earth pressure.dat

23.1 Problem Description

The problem consists of a soil mass retained by a wall as shown in Fig. 23.1. The horizontal passive
earth pressure is determined and is compared to the value obtained for the case of the soil mass
externally forced to its limiting strength.

B

Soil
H

W
al

l

Figure 23.1: Problem Description

23.2 Reference Solution

When a retaining wall is forced against a soil mass, lateral passive earth pressure is exerted from the
soil to the wall. In order to describe the horizontal component of the pressure the soil will exert, an earth
pressure coefficient Kph according to Coulomb theory is used:

Kph =
cos2 (ϕ − α)

�

1 −
√

√ sn(ϕ+δp) · sn(ϕ+β)
cos(α+δp) · cos(α+β)

�2

cos2α

, (23.1)

where the parameters α, ϕ, δp and β are defined in Fig. 23.2. The wall friction angle is denoted by δp
and the soil friction angle by ϕ. The horizontal passive earth pressure resultant is [15]:

Eph =
1

2
γ H2 Kph. (23.2)

In order to account for the development of irreversible strains in the soil, under the action of the passive
load, a plasticity model has to be utilised. Whether plasticity occurs in a calculation, can be evaluated
with a yield function ƒ , where the condition ƒ = 0 stands for the plastic yielding. This condition can
be represented as a surface in principal stress space. In this Benchmark, the Mohr-Coulomb model is
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adopted, which represents an elastic perfectly-plastic behaviour. A perfectly-plastic model corresponds
to a fixed yield surface, i.e. a yield surface that is fully defined by model parameters and is not affected by
plastic straining. Moreover, for stress state within the yield surface, the behaviour is purely elastic and all
strains are reversible. Hence, the Mohr-Coulomb model requires the input of a total of five parameters,
the Young’s modulus E and Poisson’s ratio ν for the definition of the elasticity, and three for the plasticity,
the friction angle ϕ, the cohesion c and the dilatancy angle ψ. The dilatancy angle is involved in the
plastic potential function and controls the evolution of plastic volumetric strain increments [24].

ƒ = σ1 −
1 − snϕ

1 + snϕ
· σ3 −

2c cosϕ

1 + snϕ
, (23.3)

Q

β

Hϕαδp

Ep

ϑp

Figure 23.2: Passive Earth Pressure by Coulomb

The yield function for the Mohr-Coulomb model [24] is defined by Eq. 23.3, where σ1 and σ3 are the
principal stresses, and its yield surface is shown in Fig. 23.3.

−σ1

−σ3

−σ2

Figure 23.3: Mohr-Coulomb Yield Surface in Principal Stress Space

23.3 Model and Results

The properties of the model are defined in Table 23.1. The Mohr-Coulomb plasticity model is used for
the modelling of the soil behaviour. The load is defined as a unit support displacement in the -direction
and is increased gradually until a limit value. It is applied at node 405, which is kinematically coupled
with the wall nodes as shown in Fig. 23.4, and therefore corresponds to a uniformly applied load at the
wall nodes. Maximum displacement is recorded for each loading increment, and the curve of horizontal
passive earth pressure-displacement (Fig. 23.5) is plotted against the reference solution according to
Coulomb theory.
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405

Figure 23.4: Finite Element Model

Table 23.1: Model Properties

Material Properties Geometric Properties Loading

Wall Soil Wall Soil

E = 30000MP E = 300MP B = 0.1m B = 30m W = 1mm

ν = 0.18 ν = 0.20 H = 0.8m H = 6m

γ = 24 kN/m3 γ = 19 kN/m3

c = 1 kN/m2

ϕ = 38◦

ψ = 6◦

δp = ϕ /3
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0
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Figure 23.5: Horizontal Passive Earth Pressure-Displacement Curve
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23.4 Conclusion

This example examines the horizontal passive earth pressure determination for a soil mass retained by
a wall. The Mohr-Coulomb model for the definition of the soil material behaviour is adopted. It has been
shown that the behaviour of the soil is captured accurately.

23.5 Literature

[15] K. Holschemacher. Entwurfs- und Berechnungstafeln für Bauingenieure. 3rd. Bauwerk, 2007.
[24] AQUA Manual: Materials and Cross Sections. Version 18-0. SOFiSTiK AG. Oberschleißheim, Ger-

many, 2017.
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24 BE21: Passive Earth Pressure II

Overview

Element Type(s): C2D

Analysis Type(s): STAT, MNL

Procedure(s): LSTP

Topic(s): SOIL

Module(s): TALPA

Input file(s): passive earth pressure harden.dat

24.1 Problem Description

The model of Benchmark 20 is here extended for the case of a soil material described by the hardening
plasticity soil model. The problem consists of a soil mass retained by a wall as shown in Fig. 24.1. The
horizontal passive earth pressure is determined and is compared to the value obtained for the case of
the soil mass externally forced to its limiting strength.

B

Soil HW
al

l

Figure 24.1: Problem Description

24.2 Reference Solution

When a retaining wall is forced against a soil mass, lateral passive earth pressure is exerted from the
soil to the wall. In order to describe the horizontal component of the pressure the soil will exert, an earth
pressure coefficient Kph according to Coulomb theory is used:

Kph =
cos2 (ϕ − α)

�

1 −
√

√ sn(ϕ+δp) · sn(ϕ+β)
cos(α+δp) · cos(α+β)

�2

cos2α

, (24.1)

where the parameters α, ϕ, δp and β are defined in Fig. 24.2. The wall friction angle is denoted by δp
and the soil friction angle by ϕ. The horizontal passive earth pressure resultant is [15]:

Eph =
1

2
γ H2 Kph. (24.2)

In order to account for the development of irreversible strains in the soil, under the action of the passive
load, a plasticity model has to be used. In this Benchmark the hardening plasticity soil model is adopted,
which is an extended elastoplastic material with an optimized hardening rule [24]. In contrast to the Mohr-
Coulomb model (Be. 20), which is an elastic-perfectly-plastic model, the yield surface of a hardening
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plasticity model is not fixed but it can expand due to plastic straining. Its hardening rule is based on a
hyperbolic stress-strain relationship, derived from triaxial testing. Hardening is limited by the material ’s
strength, represented by the classic Mohr-Coulomb failure criterion. Additionally, the model accounts for
the stress dependent stiffness, it captures the loading state and can therefore account for the different
stiffness in primary loading and un-/reloading paths. The important features of the model are [24]:

• the deviatoric hardening based on hyperbolic stress-strain relationship: input parameter E50,reƒ ,
Rƒ

• the Mohr-Coulomb failure criterion: input parameter ϕ, c, ψ

• the stress dependent stiffness: input parameter m, Preƒ

• the loading dependent stiffness: input parameter μ, Er

• the optional limitation of tensile stress: input parameter ƒt

• the modelling of the contractant behaviour and stiffness during primary compression (oedometric
testing): input parameter Es,reƒ

• the preservation of a realistic stress ratio: input parameter k0

Q

β

Hϕαδp

Ep

ϑp

Figure 24.2: Passive Earth Pressure by Coulomb

The yield surface (Fig. 24.3) for the hardening plasticity model is bounded by the Mohr-Coulomb failure
criterion, while the oedometric properties create a cap yield surface, closing the elastic region in the
direction of the p-axis.

−σ1

−σ3

−σ2

Mohr-Coulomb yield surface

p

σ1 − σ3

Mohr-Coulomb

failure line

Figure 24.3: Yield Surface Properties
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24.3 Model and Results

The properties of the model are defined in Table 24.1. The hardening plasticity model (GRAN) is used
for the modelling of the soil behaviour in order for a more realistic representation in comparison to the
elastic-perfectly-plastic Mohr-Coulomb model (Benchmark 20). The load is defined as a unit support
displacement in the -direction and is increased gradually until a limit value. It is applied at node 405,
which is kinematically coupled with the wall nodes as shown in Fig. 24.4, and therefore corresponds
to a uniformly applied load at the wall nodes. Maximum displacement is recorded for each loading
increment, and the curve of horizontal passive earth pressure-displacement (Fig. 24.5) is plotted against
the reference solution according to Coulomb theory.

405

Figure 24.4: Finite Element Model

Table 24.1: Model Properties

Material Properties Geometric Properties Loading

Wall Soil Wall Soil

E = 30000MP E = 300MP B = 0.1m B = 30m W = 1mm

ν = 0.18 μ = 0.20 H = 0.8m H = 6m

γ = 24 kN/m3 γ = 19 kN/m3

c = 1 kN/m2

ϕ = 38◦

ψ = 6◦

Es,reƒ = 75MP

E50,reƒ = 75MP

m = 0.55

Rƒ = 0.9

Preƒ = 0.1MP

δp = ϕ /3, γboyncy = 9 kN/m3

From the comparison of the curves with respect to the two different plasticity models and the refer-
ence solution, it can be observed that both approach the limit value accurately. Their basic difference
lies on the accounting of the hardening effect, a more realistic approach, which corresponds to higher
deformations for the limit value, as it can be observed by the hardening plasticity curve in Fig. 24.5.
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Figure 24.5: Horizontal Passive Earth Pressure-Displacement Curve

Hardening plasticity model

Mohr-Coulomb plasticity model

Figure 24.6: Nodal Displacement for End Load in y-direction

24.4 Conclusion

This example examines the horizontal passive earth pressure determination for a soil mass retained by
a wall. The hardening plasticity model for the definition of the soil material behaviour is adopted and
compared to the Mohr-Coulomb model. It has been shown that the behaviour of the soil is captured
accurately.
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24.5 Literature

[15] K. Holschemacher. Entwurfs- und Berechnungstafeln für Bauingenieure. 3rd. Bauwerk, 2007.
[24] AQUA Manual: Materials and Cross Sections. Version 18-0. SOFiSTiK AG. Oberschleißheim, Ger-

many, 2017.
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25 BE22: Tunneling - Ground Reaction Line

Overview

Element Type(s): C2D

Analysis Type(s): STAT, MNL

Procedure(s): LSTP

Topic(s): SOIL

Module(s): TALPA

Input file(s): groundline hoek.dat

25.1 Problem Description

This problem consists of a cylindrical hole in an infinite medium, subjected to a hydrostatic in-situ state,
as shown in Fig. 25.1. The material is assumed to be linearly elastic-perfectly plastic with a failure
surface defined by the Mohr-Coulomb criterion and with zero volume change during plastic flow. The
calculation of the ground reaction line is performed and compared to the analytical solution according to
Hoek [25] [26].

po

po

p

Figure 25.1: Problem Description

25.2 Reference Solution

The stability of deep underground excavations depends upon the strength of the rock mass surrounding
the excavations and upon the stresses induced in this rock. These induced stresses are a function of the
shape of the excavations and the in-situ stresses which existed before the creation of the excavations
[25]. When tunnelling in rock, it should be examined how the rock mass, surrounding the tunnel, deforms
and how the support system acts to control this deformation. In order to explore this effect, an analytical
solution for a circular tunnel will be utilised, which is based on the assumption of a hydrostatic in-situ
state. Furthermore, the surrounding rock mass is assumed to follow an elastic-perfectly-plastic material
behaviour with zero volume change during plastic flow. Therefore the Mohr-Coulomb failure criterion is
adopted, in order to model the progressive plastic failure of the rock mass surrounding the tunnel. The
onset of plastic failure, is thus expressed as:

σ1 = σcm + kσ3, (25.1)
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where σ1 is the axial stress where failure occurs, σ3 the confining stress and σcm the uniaxial compres-
sive strength of the rock mass defined by:

σcm =
2c cosϕ

1 − snϕ
. (25.2)

The parameters c and ϕ correspond to the cohesion and angle of friction of the rock mass, respectively.
The tunnel behaviour on the other hand, is evaluated in terms of the internal support pressure. A circular
tunnel of radius ro subjected to hydrostatic stresses po and a uniform internal support pressure p, as
shown in Fig. 25.2, is assumed.

po

po

p rp
r

Figure 25.2: Plastic zone surrounding a circular tunnel

As a measure of failure, the critical support pressure pcr is defined:

pcr =
2po − σcm
1 + k

, (25.3)

where k is the coefficient of passive earth pressure defined by:

k =
1 + snϕ

1 − snϕ
. (25.4)

If the internal support pressure p is greater than pcr , the behaviour of the surrounding rock mass
remains elastic and the inward elastic displacement of the tunnel wall is:

e =
ro (1 + ν)

E
(po − p), (25.5)

where E is the Young’s modulus and ν the Poisson’s ratio. If p is less than pcr , failure occurs and the
total inward radial displacement of the walls of the tunnel becomes:

p =
ro (1 + ν)

E

�

2 (1 + ν) (po − pcr)
�

rp

ro

�2

− (1 − 2ν) (po − p)
�

, (25.6)

and the plastic zone around the tunnel forms with a radius rp defined by:
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rp = ro

�

2 (po (k − 1) + σcm)

(1 + k) ((k − 1)p + σcm)

�

1
(k−1)

(25.7)

25.3 Model and Results

The properties of the model are defined in Table 25.1. The Mohr-Coulomb plasticity model is used for
the modelling of the rock behaviour. The load is defined as a unit supporting pressure, uniform along the
whole line of the circular hole, following the real curved geometry. The ground reaction line is calculated,
which depicts the inward oriented deformation along the circumference of the opening that is to be
expected in dependence of the acting support pressure.

Figure 25.3: Finite Element Model

Table 25.1: Model Properties

Material Properties Geometric Properties Pressure Properties

E = 5000000 kN/m2 ro = 3.3m Po = 29700 kN/m2

ν = 0.2 Pm = 7000 kN/m
2

γ = 27 kN/m3 Pcr = 8133.744 kN/m2

γboyncy = 17 kN/m3

ϕ = 39◦, ψ = 0◦

c = 3700 kN/m2

k = 4.395

The uniaxial compressive stress of the rock mass σcm is calculated at 15514.423 kN/m2 and the
critical pressure pcr is 8133.744 kN/m2. The ground reaction line is presented in Fig. 25.4, as the
curve of the inward radial displacement over the acting support pressure. It can be observed that the
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calculated values are in agreement with the analytical solution according to Hoek.
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Figure 25.4: Ground Reaction Line

25.4 Conclusion

This example examines the tunnel deformation behaviour with respect to the acting support pressure. It
has been shown that the behaviour of the tunnel in rock is captured accurately.

25.5 Literature

[25] E. Hoek. Practical Rock Engineering. 2006.
[26] E. Hoek, P.K. Kaiser, and W.F. Bawden. Support of Underground Excavations in Hard Rock. 1993.
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26 BE23: Undamped Free Vibration of a SDOF System

Overview

Element Type(s): SPRI

Analysis Type(s): DYN

Procedure(s): TSTP

Topic(s):

Module(s): DYNA

Input file(s): undamped sdof.dat

26.1 Problem Description

This problem consists of an undamped linearly elastic SDOF system undergoing free vibrations, as
shown in Fig. 26.1. The response of the system is determined and compared to the exact reference
solution.

(0)

m

k

Figure 26.1: Problem Description

26.2 Reference Solution

The essential physical properties of a linearly elastic structural system subjected to an external excitation
or dynamic loading are its mass, stiffness and damping. In the simplest model of a SDOF system, as
shown in Fig. 26.2 in its idealized form, these properties are concentrated in a single physical element.
For this system the elastic resistance to displacement is provided by the spring of stiffness k, while the
energy-loss mechanism by the damper c. The mass m is included in the rigid body, which is is able to
move only in simple translation, and thus the single displacement coordinate (t) completely describes
its position [27].

(t)

p(t)
m

c

k

Figure 26.2: Problem Description
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The motion of a linear SDOF system, subjected to an external force p(t) is governed by [27] [28]:

m̈ + ċ + k = p (t) (26.1)

Setting p(t) = 0, gives the differential equation governing the free vibration of the system

m̈ + ċ + k = 0 (26.2)

For a system without damping (c =0), Eq. 26.2 specialises to

m̈ + k = 0 (26.3)

Free vibration is initiated by disturbing the system from its static equilibrium position by imparting the
mass some displacement (0) and/or velocity (0̇) at time zero. Subjected to these initial conditions,
the solution to the homogeneous differential equation of motion is:

 (t) =  (0) cos (ωnt) +
̇(0)

ωn
sn (ωnt) (26.4)

where

ωn =

√

√

√ k

m
(26.5)

represents the natural circular frequency of vibration and ƒ the natural cyclic frequency of vibration

ƒn =
ωn

2π
(26.6)

The period T represents the time required for the undamped system to complete one cycle of free
vibration and is given by

Tn =
2π

ωn
=
1

ƒn
(26.7)

26.3 Model and Results

The properties of the model are defined in Table 26.1. The system is initially disturbed from its static
equilibrium position by a displacement of 20 mm and is then let to vibrate freely. Eq. 26.4 is plotted
in Fig. 26.4, presenting that the system undergoes vibration motion about its undeformed ( = 0)
position, and that this motion repeats itself every 2π/ωn seconds. The exact solution is compared to the
calculated time history of the displacement of the SDOF system for different time integration methods.
The time step is taken equal to 0.02 sec corresponding to a dt/T ratio of 1/50.
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Figure 26.3: Finite Element Model

Table 26.1: Model Properties

Model Properties Excitation Properties

m = 1 t (0) = 20mm

k = 4π2 kN/m ̇(0) = 0

T = 1 sec
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Figure 26.4: Undamped Free Vibration Response

From the results presented in Table 26.2, we observe that the response computed by the examined
integration schemes is in a good agreement with the exact solution.

Table 26.2: Results

Integration method Newmark Wilson Hughes Alpha Ref.

m [mm] 19.949 19.963 19.956 20.000
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26.4 Conclusion

This example examines the response of a linear elastic undamped SDOF system undergoing free vibra-
tion. It has been shown that the behaviour of the system is captured adequately.

26.5 Literature

[27] R. W. Clough and J. Penzien. Dynamics of Structures. 3rd. Computers & Structures, Inc., 2003.
[28] A. K. Chopra. Dynamics of Structures: Theory and Applications to Earthquake Engineering. Pren-

tice Hall, 1995.
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27 BE24: Free Vibration of a Under-critically Damped
SDOF System

Overview

Element Type(s): SPRI, DAMP

Analysis Type(s): DYN

Procedure(s): TSTP

Topic(s):

Module(s): DYNA

Input file(s): damped sdof.dat

27.1 Problem Description

This problem consists of an under-critically damped linearly elastic SDOF system undergoing free vi-
brations, as shown in Fig. 27.1. The response of the system is determined and compared to the exact
reference solution.

(0)

m

c

k

Figure 27.1: Problem Description

27.2 Reference Solution

The differential equation governing the free vibration of a linear elastic damped SDOF system, as shown
in Fig. 27.1 is given by [27] [28]:

m ̈ + c ̇ + k  = 0 (27.1)

where c is the linear viscous damping, k the linear spring stiffness and m the mass of the system.
Dividing Eq. 27.1 by m gives

̈ + 2 ξ ωn ̇ + ω2n  = 0 (27.2)

where ωn =
p

k/m as defined in Benchmark 23 and ξ represents the damping ratio

ξ =
c

2mωn
=

c

ccr
(27.3)
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The parameter ccr is called the critical damping coefficient (Eq. 27.4), because it is the smallest value
of c that inhibits oscillation completely. If c ¡ ccr or ξ ¡ 1 the system is said to be under-critically damped
and thus oscillates about its equilibrium position with a progressively decreasing amplitude [28].

ccr = 2mωn = 2
p

k m =
2k

ωn
(27.4)

Free vibration is initiated by disturbing the system from its static equilibrium position by imparting the
mass some displacement (0) and/or velocity (0̇) at time 0. Subjected to these initial conditions, the
solution to the homogeneous differential equation of motion is:

 (t) = e−ξ ωn t

�

 (0) cos (ωD t) +
�

̇(0) + ξ ωn (0)

ωD

�

sn (ωD t)
�

(27.5)

where ωn represents the natural frequency of damped vibration and TD the natural period of damped
vibration given by

ωn = ωn

q

1 − ξ2 (27.6)

Td =
2π

ωD
=

Tn
Æ

1 − ξ2
(27.7)

Figure 27.2: Effects of Damping on Free Vibration

The damped system oscillates with a displacement amplitude decaying exponentially with every cycle
of vibration, as shown in Fig. 27.2. The envelope curves ±ρe−ξ ωn t touch the displacement curve at
points slightly to the right of its peak values, where
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ρ =

√

√

√

(0)2 +
�

̇(0) + ξ ωn (0)

ωD

�2

(27.8)

27.3 Model and Results

The properties of the model are defined in Table 27.1. The system is initially disturbed from its static
equilibrium position by a displacement of 20 mm and is then let to vibrate freely. Eq. 27.5 is plotted
in Fig. 27.3 and is compared to the calculated time history of the displacement of the SDOF system
for different time integration methods. The time step is taken equal to 0.02 sec corresponding to a
dt/T ratio of 1/50. From the curves, it is obvious that the examined integration schemes are in a good
agreement with the exact solution. The damping of the SDOF system is represented in two ways, either
by the spring element with a damping value in axial direction or with the damping element. The results
obtained are exactly the same for both case. This can be visualised in the result files for the case of the
Newmark integration scheme.

Table 27.1: Model Properties

Model Properties Excitation Properties

m = 1 t (0) = 20mm

k = 4π2 kN/m (0̇) = 0

T = 1 sec

ξ = 5 %
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Figure 27.3: Damped Free Vibration Response
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27.4 Conclusion

This example examines the response of a linear elastic under-critically damped SDOF system undergo-
ing free vibration. It has been shown that the behaviour of the system is captured adequately.

27.5 Literature

[27] R. W. Clough and J. Penzien. Dynamics of Structures. 3rd. Computers & Structures, Inc., 2003.
[28] A. K. Chopra. Dynamics of Structures: Theory and Applications to Earthquake Engineering. Pren-

tice Hall, 1995.
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28 BE25: Eigenvalue Analysis of a Beam Under Various
End Constraints

Overview

Element Type(s): B3D

Analysis Type(s): DYN

Procedure(s): EIGE

Topic(s):

Module(s): DYNA

Input file(s): eigenvalue analysis.dat

28.1 Problem Description

This problem consists of a beam with various end constraints, as shown in Fig. 28.1. The eigenfrequen-
cies of the the system are determined and compared to the exact reference solution for each case.

Figure 28.1: Problem Description

28.2 Reference Solution

The general formula to determine the eigenfrequency of a standard Bernoulli beam for a linear elastic
material is given by [15] [29]

ƒ =
λ2

2π

√

√

√

E

μ4
(28.1)

where E the flexural rigidity of the beam,  the length, μ = γ∗ A/g the mass allocation and λ a factor
depending on the end constraints. The values of λ for various cases are given in Table 28.1. In this
example, we analyse four different cases of a beam structure:

1. simple cantilever

2. cantilever with simply supported end

3. simply supported

4. both ends fixed
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Table 28.1: Constraints Factor

End Constraints λ

λ = 1.875

λ = 3.926

λ = π

λ = 4.73

28.3 Model and Results

The properties of the model are defined in Table 28.2 and the resulted eigenfrequencies are given in
Table 28.3. For the eigenvalue analysis a consistent mass matrix formulation is used as well as a
Bernoulli beam. The finite element model for all examined cases consists of ten beam elements.

Table 28.2: Model Properties

Material Properties Geometric Properties

E = 200MP h = 1 cm, b = 1 cm,  = 1m

γ = 25 kN/m3 A = 1 cm2,  = 0.1 cm4, μ = 0.025 t/m

Table 28.3: Results

Eigenfrequency SOF. [Hz] Ref. [Hz]

simple cantilever 0.457 0.457

cantilever with simply supported end 2.004 2.003

simply supported 1.283 1.283

both ends fixed 2.907 2.907

28.4 Conclusion

The purpose of this example is to test the eigenvalue capability of the program w.r.t. different options. It
has been shown that the eigenfrequencies for all beam systems are calculated accurately.

28.5 Literature

[15] K. Holschemacher. Entwurfs- und Berechnungstafeln für Bauingenieure. 3rd. Bauwerk, 2007.
[29] S. Timoshenko. Vibration Problems in Engineering. 2nd. D. Van Nostrand Co., Inc., 1937.
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29 BE26: Response of a SDOF System to Harmonic Ex-
citation

Overview

Element Type(s): SPRI, DAMP

Analysis Type(s): DYN

Procedure(s): TSTP

Topic(s):

Module(s): DYNA

Input file(s): harmonic damped.dat, harmonic undamped.dat

29.1 Problem Description

This problem consists of an elastic SDOF system undergoing forced vibration, as shown in Fig. 29.1.
The response of an undamped and damped system is determined and compared to the reference solu-
tion.

(t)

p(t)m

c

k

Figure 29.1: Problem Description

29.2 Reference Solution

A harmonic force is p(t) = po sn ωpt, where po is the amplitude value of the force and its frequency
ωp is called the exciting frequency. The differential equation governing the forced harmonic vibration of
a damped system is given by [27] [28]:

m ̈ + c ̇ + k  = po sn ωpt (29.1)

m ̈ + k  = po sn ωpt (29.2)

For undamped systems it simplifies to Eq. 29.2. Subjected also to initial conditions, (0) and (0̇), the
total solution to Eq. 29.2 is:

 (t) =  (0) cos ωnt +
�

̇(0)

ωn
−
po

k

ωp/ωn

1 − (ωp/ωn)2

�

sn ωnt

︸ ︷︷ ︸

trnsent

+
po

k

1

1 − (ωp/ωn)2
sn ωpt

︸ ︷︷ ︸

stedystte

(29.3)
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Eq. 29.3 shows, that u(t) contains two distinct vibration components, first the term sn ωpt gives a
vibration at the exciting frequency and second the terms sn ωnt and cos ωnt give a vibration at the
natural frequency of the system. The first term is the steady state vibration, corresponding to the applied
force and the latter is the transient vibration, depending on the initial conditions. It exists even if the initial
conditions vanish, in which case it becomes

 (t) =
po

k

1

1 − (ωp/ωn)2

�

sn ωpt −
ωp

ωn
sn ωnt

�

(29.4)

For the case of a damped SDOF system, the total solution is given by

 (t) = e−ξωnt [A cos ωDt + B sn ωDt]
︸ ︷︷ ︸

trnsent

+ C sn ωpt + D cos ωpt
︸ ︷︷ ︸

stedystte

(29.5)

The coefficients C and D are determined from the particular solution of the differential equation of motion
(Eq. 29.1), whereas A and B are determined in terms of the initial conditions. For the special case of
zero initial conditions, the coefficients are given by

C =
po

k

1 − (ωp/ωn)2

[1 − (ωp/ωn)2]2 + [2ξ (ωp/ωn)]2
(29.6)

D =
po

k

−2ξ (ωp/ωn)

[1 − (ωp/ωn)2]2 + [2ξ (ωp/ωn)]2
(29.7)

A = −D (29.8)

B =
A ξ − C (ωp/ωn)

Æ

1 − ξ2
(29.9)

For the special case where the exciting frequency equals the natural frequency of the SDOF system, we
observe the resonant response. For the undamped system, the steady state response amplitude tends
towards infinity as we approach unity and the peak values build up linearly, as shown in Fig. 29.2. For
the damped case though, they build up in accordance to (st/2ξ)e−ξωnt and towards a steady state
level, as shown in Fig. 29.2. The static deformation st = po/k, corresponds to the displacement which
would be produced by the load po if applied statically, and serves as a measure of amplitude.

Undamped system Damped system

tt





Figure 29.2: Response to Resonant Loading for at-rest initial conditions
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29.3 Model and Results

The properties of the model are defined in Table 29.1. The system is excited by a harmonic sinusoidal
force and undergoes a forced vibration with zero initial conditions. The cases of the elastic damped
and undamped SDOF system with a frequency ratio ωp/ωn = 2 are examined and their responses are
compared to the exact solutions presented in Section 29.2. The resonance response is also examined
for both systems, as shown in Fig. 29.4.

Table 29.1: Model Properties

Model Properties Excitation Properties

m = 1 t (0) = 0

k = 4π2 kN/m (0̇) = 0

T = 1 sec p0 = 10 kN

ξ = 2 % ωp = 2ωn

(a) Damped system

(b) Undamped system

Figure 29.3: Response to Harmonic Loading for at-rest initial conditions and ratioωp/ωn = 2: (a)
ξ = 2%, (b) ξ = 0
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(a) Damped system

(b) Undamped system

Figure 29.4: Response to Resonant Loading (ωp/ωn = 1) for at-rest initial conditions: (a)
ξ = 2%, (b) ξ = 0

29.4 Conclusion

The purpose of this example is to test the calculation of the response of a dynamic system in terms of a
harmonic loading function. It has been shown that the behaviour of the system is captured adequately.

29.5 Literature

[27] R. W. Clough and J. Penzien. Dynamics of Structures. 3rd. Computers & Structures, Inc., 2003.
[28] A. K. Chopra. Dynamics of Structures: Theory and Applications to Earthquake Engineering. Pren-

tice Hall, 1995.
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30 BE27: Response of a SDOF System to Impulsive
Loading

Overview

Element Type(s): SPRI

Analysis Type(s): DYN

Procedure(s): TSTP

Topic(s):

Module(s): DYNA

Input file(s): impulse sine wave.dat, impulse rectangular.dat

30.1 Problem Description

This problem consists of an elastic undamped SDOF system undergoing forced vibration (Fig. 30.1) due
to an impulsive loading as the one shown in Fig. 30.2. The response of the system is determined and
compared to the exact reference solution.

(t)

p(t)
m

c

k

Figure 30.1: Problem Description

p(t)

t

Figure 30.2: Arbitrary Impulsive Loading

30.2 Reference Solution

Another special case of dynamic loading of the SDOF system is the impulsive load. Such a load consists
of a single principal impulse of arbitrary form, as illustrated in Fig. 30.2, and generally is of relatively
short duration. Damping has much less importance in controlling the maximum response of a structure
to impulsive loads than for periodic or harmonic loads because the maximum response to a particular
impulsive load will be reached in a very short time, before the damping forces can absorb much energy
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from the structure [27]. Therefore the undamped response to impulsive loads will be considered in this
Benchmark.

p(t)

p0

t

t1

(a) Half sine wave

p(t)

p0

t

t1

(b) Rectangular

Figure 30.3: Examined Impulse Loading

The response to an impulse loading is always divided into two phases, the first corresponds to the
forced vibration phase in the interval during which the load acts and the second corresponds to the free
vibration phase which follows. Let us consider the case, where the structure is subjected to a single half
sine wave loading as shown in Fig. 30.3(a). Assuming that the system starts from rest, the undamped
response ratio time history R(t) = (t)/(p0/k), is given by the simple harmonic load expression

R (t) =
1

1 − β2
�

sn ωpt − β sn ωnt
�

(30.1)

where β =ωp/ωn, po is the amplitude value of the force and ωp its frequency. Introducing the non
dimensional time parameter α = t/ t1 so that ωpt = πα and ωnt = πα/β, we can rewrite the equation
accordingly

R (α) =
1

1 − β2

�

sn πα − β sn
πα

β

�

0 ≤ α ≤ 1 (30.2)

where t1 the duration of the impulse and β ≡ T/2t1. This equation is valid only for phase  correspond-
ing to 0 ≤ α ≤ 1. While it is very important to understand the complete time history behaviour as shown
in Fig. 30.4, the engineer is usually only interested in the maximum value of response as represented
by Points a, b, c, d, and e. If a maximum value occurs in Phase , the value of α at which it occurs can
be determined by differentiating Eq. 30.2 with respect to α and equating to zero

d R (α)

d α
= 0 (30.3)

solving for α yields the α values for the maxima

α =
2βn

β + 1
n = 0,1,2, ... 0 ≤ α ≤ 1 (30.4)

For phase  where t ≥ t1 and the free vibration occurs, the value of α is not necessary and the
maximum response is given by
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Rm =
� −2β

1 − β2

�

cos
π

2β
α ≥ 1 (30.5)

Accordingly for the case of a rectangular impulse loading Fig. 30.3(b), the general response ratio solution
for at rest initial conditions and for phase  is given by

R (α) = 1 − cos 2π
t1

T
α 0 ≤ α ≤ 1 (30.6)

The maximum response ratio Rm is given again in terms of α and can be determined in the same
manner by differentiating Eq. 30.6 with respect to α and equating to zero, yielding

α = βn n = 0,1,2, ... 0 ≤ α ≤ 1 (30.7)

For phase , the maximum response of the free vibrating system is given by

Rm = 2 sn π
t1

T
α ≥ 1 (30.8)

Special attention has to be given in the case of β = 1 where the expression of the response ratio becomes
indeterminate and the L’ Hospital’s rule has to be utilised.

R(t)

t

Figure 30.4: Response Ratios due to Half Sine Pulse

30.3 Model and Results

In the expressions derived before, the maximum response produced in an undamped SDOF structure by
each type of impulsive loading depends only on the ratio of the impulse duration to the natural period of
the structure t1/T. Thus, it is useful to plot the maximum value of response ratio Rm as a function of
t1/T for various forms of impulsive loading. Such plots are commonly known as displacement-response
spectra and are derived here, for two forms of loading, a rectangular and a half sine wave impulse.
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Generally plots like these can be used to predict with adequate accuracy the maximum effect to be
expected from a given type of impulsive loading acting on a simple structure. The properties of the
model are defined in Table 30.1. The resulting figures are presented in Fig. 30.5.

Table 30.1: Model Properties

Model Properties Excitation Properties

m = 1 t (0) = 0

k = 4π2 kN/m (0̇) = 0

T = 1 sec p0 = 10 kN
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Figure 30.5: Displacement - Response Spectra for Two Types of Impulse

30.4 Conclusion

The purpose of this example is to test the calculation of the response of a dynamic system in terms of
an impulsive loading. It has been shown that the behaviour of the system is captured adequately.

30.5 Literature

[27] R. W. Clough and J. Penzien. Dynamics of Structures. 3rd. Computers & Structures, Inc., 2003.
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31 BE28: Cylindrical Hole in an Infinite Elastic Medium

Overview

Element Type(s): C2D

Analysis Type(s): STAT

Procedure(s):

Topic(s): SOIL

Module(s): TALPA

Input file(s): hole elastic.dat

31.1 Problem Description

This problem consists of a cylindrical hole in an infinite elastic medium subjected to a constant in-situ
state, as shown in Fig. 31.1. The material is assumed to be isotropic and elastic. The stresses and the
displacements are verified.

po

po

Figure 31.1: Problem Description

31.2 Reference Solution

The problem of calculating the displacements and stresses outside a circular hole in an infinite elastic
medium, with a uniform stress state far from the hole, was first solved by the German engineer Kirsch
in 1898. It is a rather important topic due to the fact that most of the holes drilled through rock are of
circular section.
The classical Kirsch solution can be used to find the radial and tangential displacement fields and stress
distributions, for a cylindrical hole in an infinite isotropic elastic medium under plane strain conditions.
The stresses σr and σθ for a point at polar coordinates (r, θ) outside the cylindrical opening of radius α
are given by [30]:

σr =
p1 + p2
2

�

1 −
α2

r2

�

+
p1 − p2
2

�

1 −
4α2

r2
+
3α4

r4

�

cos 2θ (31.1)

σθ =
p1 + p2
2

�

1 +
α2

r2

�

−
p1 − p2
2

�

1 +
3α4

r4

�

cos 2θ (31.2)

The radial outward displacement r , assuming conditions of plane strain, is given by:
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r =
p1 + p2
4G

α2

r
+
p1 − p2
4G

α2

r

�

4 (1 − ν) −
α2

r2

�

cos 2θ (31.3)

where G is the shear modulus, ν the Poisson ratio and p1, p2, θ, r are defined in Fig. 31.2

σr

σθ
θ

r

θ

r
p1

p2

Figure 31.2: Cyllindrical Hole in an Infinite Elastic Medium

31.3 Model and Results

The properties of the model are defined in Table 31.1. The radius of the hole is 1 m and is assumed to
be small compared to the length of the cylinder, therefore 2D plane strain conditions are in effect. A fixed
external boundary is located 29.7 m from the hole center. The model is presented in Fig. 31.3. The
stresses and displacements are calculated and verified with respect to the formulas provided in Section
31.2.

Figure 31.3: Finite Element Model

Table 31.1: Model Properties

Material Properties Geometric Properties Pressure Properties

E = 6777.9MP α = 1m Po = 30MP

ν = 0.21 rbondry = 29.7m
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Figure 31.4: Radial and Tangential Stresses for Cylindrical Hole in Infinite Elastic Medium
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Figure 31.5: Radial Displacement for Cylindrical Hole in Infinite Elastic Medium
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Figure 31.6: Total Displacement Distribution

Figures 31.4 and 31.5 show the radial and tangential stress and the radial displacement respectively,
along a line, lying on the X-axis. This line (cut) can be visualised in Fig. 31.6, where the radial displace-
ment distribution is illustrated. The results are in very good agreement with the reference solution.

31.4 Conclusion

This example verifies the deformation and stresses behaviour of a cylindrical hole in an infinite elastic
medium. It has been shown that the behaviour of the model is captured accurately.

31.5 Literature

[30] J. C. Jaeger, N. G. W. Cook, and R. W. Zimmerman. Fundamentals of Rock Mechanics. 4th.
Blackwell Publishing, 2007.
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32 BE29: Cylindrical Hole in an Infinite Mohr-Coulomb
Medium

Overview

Element Type(s): C2D

Analysis Type(s): STAT, MNL

Procedure(s): LSTP

Topic(s): SOIL

Module(s): TALPA

Input file(s): hole mohr.dat

32.1 Problem Description

This problem verifies stresses for the case of a cylindrical hole in an infinite elastic-plastic medium
subjected to a constant in-situ state, as shown in Fig. 32.1. The material is assumed to be linearly
elastic and perfectly plastic with a failure surface defined by the Mohr-Coulomb criterion. The stresses
and the displacements are verified.

Po

Po

P

Figure 32.1: Problem Description

32.2 Reference Solution

Consider a hollow cylinder with inner radius  and outer radius r, under plane strain conditions, with a
uniform pressure applied to its outer surface. If this pressure is slowly increased from 0 to some value
Po, at first the cylinder will everywhere be in the elastic zone. As Po increases further, the yielding will
start, the yielded zone will grow radially outward, and the cylinder will consist of an inner annular region
that has yielded and an outer annulus that is still in its elastic state [30]. A specialised problem is now
the calculation of the stresses outside a cylindrical hole in an infinite elastic-perfectly-plastic medium,
here with a failure surface defined by the Mohr-Coulomb criterion. Assume that the rock mass is initially
under hydrostatic stress Po and then a circular hole of radius  is drilled into the rock, so that the stress
at r =  is reduced to some value P. The yield zone radius Ro is given analytically by the theoretical
model based on the solution of Salencon [31]
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Ro = α





2

Kp + 1

Po +
q

Kp−1

P +
q

Kp−1





1
Kp−1

(32.1)

where α is the radius of the hole, Po the initial in-situ stress, P the internal pressure and Kp, q are given
by

Kp =
1 + sn ϕ

1 − sn ϕ
(32.2)

q = 2c tn (45 + ϕ/2) (32.3)

The parameters c and ϕ correspond to the cohesion and angle of friction of the medium respectively.
For sufficiently small values of Po, where Po ¡ P holds, the medium will be in its elastic state, and the
stresses will be given by [30] [32]

σr = Po − (Po − σre)
�

Ro

r

�2

(32.4)

σθ = Po + (Po − σre)
�

Ro

r

�2

(32.5)

where r is the distance from the field point to the center of the hole and σre is the radial stress at the
elastic-plastic interface

σre =
1

Kp + 1
(2Po − q) (32.6)

For Po > P , the rock will fail within some annular region surrounding the borehole. The stresses in the
yielded zone will be given by

σr = −
q

Kp − 1
+
�

P +
q

Kp − 1

�

� r

α

�Kp−1
(32.7)

σr = −
q

Kp − 1
+ Kp

�

P +
q

Kp − 1

�

� r

α

�Kp−1
(32.8)

32.3 Model and Results

The properties of the model are defined in Table 32.1. The radius of the hole is 1 m and is assumed
to be small compared to the length of the cylinder, therefore 2D plane strain conditions are in effect. A
fixed external boundary is located 29.7 m from the hole center. The model is presented in Fig. 32.2.
The stresses are calculated and verified with respect to the formulas provided in Section 32.2.
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Table 32.1: Model Properties

Material Properties Geometric Properties Pressure Properties

E = 6777.9MP α = 1m Po = 30MP

ν = 0.21 rbondry = 29.7m P = 0 or 1MP 

Figure 32.2: Finite Element Model
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Figure 32.3: Radial and Tangential Stresses for Cylindrical Hole in Infinite Mohr-Coulomb Medium

Figure 32.3 show the radial and tangential stress, along a line, lying on the X-axis. Results are presented
for two cases, first with no internal pressure and second with P = 1 MP. The results in both cases are
in very good agreement with the reference solution.
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32.4 Conclusion

This example verifies the stresses of a cylindrical hole in an infinite elastic-perfectly-plastic medium. It
has been shown that the behaviour of the model is captured accurately.

32.5 Literature

[30] J. C. Jaeger, N. G. W. Cook, and R. W. Zimmerman. Fundamentals of Rock Mechanics. 4th.
Blackwell Publishing, 2007.

[31] J. Salencon. “Contraction Quasi-Statique D’ une Cavite a Symetrie Spherique Ou Cylindrique
Dans Un Milieu Elasto-Plastique”. In: Annales Des Ports Et Chaussees 4 (1969).

[32] Phase 2 Stress Analysis Verification Manual Part I. Rocscience Inc. 2009.
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33 BE30: Strip Loading on an Elastic Semi-Infinite Mass

Overview

Element Type(s): C2D

Analysis Type(s): STAT

Procedure(s):

Topic(s): SOIL

Module(s): TALPA

Input file(s): strip load.dat

33.1 Problem Description

This problem concerns the analysis of a strip loading on an elastic semi-infinite mass, as shown in Fig.
33.1. The material is assumed to be isotropic and elastic. The stresses are verified.

Figure 33.1: Problem Description

33.2 Reference Solution

The problem focuses on the calculation of the stresses due to a strip loading on an semi-infinite mass.
The stresses under the surface are given by [33]:

σy =
p

π
[α + sn α cos (α + 2δ)] (33.1)

σ =
p

π
[α − sn α cos (α + 2δ)] (33.2)

and the principal stresses are

σ1 =
p

π
[α + sn α] (33.3)

σ3 =
p

π
[α − sn α] (33.4)

where p, α, δ are described in Fig. 33.2
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Figure 33.2: Vertical Strip Loading on a Semi-Infinite Mass

33.3 Model and Results

The properties of the model are defined in Table 33.1. The strip footing has a width of 2m. The material
is considered to be isotropic and elastic and plane strain conditions are in effect. For the analysis,
boundary conditions are applied as shown in Fig. 33.3. The model is analysed with various dimensions
in order to record the influence of the boundary in the results. The stresses are calculated and verified
with respect to the formulas provided in Section 33.2. The results are printed for the case of a vertical
line (cut) for  = 0 where the stresses in  and y coincide with the principal stresses.

Figure 33.3: Finite Element Model

Table 33.1: Model Properties

Material Properties Geometric Properties Pressure Properties

E = 20000MP H = 25,50,100m P = 1MP /re

ν = 0.2 B = 2H
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Figure 33.4: Comparison of Horizontal and Vertical Stresses Under the Strip Loading

Figure 33.5: Vertical Stress Distribution for a Strip Loading on a Semi-Infinite Mass

Fig. 33.4 shows the horizontal and vertical stress along the cutting line, for the analysed models with
various dimensions. This line (cut) can be visualised in Fig. 33.5, where the contours of the vertical
stress for the case of H = 50 m are illustrated. From the results of the stresses, it is evident that the
vertical stresses are not influenced significantly from the dimensions of the model. On the contrary, for
the horizontal stresses it is obvious, that as the boundary moves further away, its influence vanishes and
the results are in very good agreement with the reference solution.
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33.4 Conclusion

This example verifies the distribution of stresses of a semi-infinite mass under strip loading. It has been
shown that the behaviour of the model is captured accurately.

33.5 Literature

[33] H.G. Poulos and E.H. Davis. Elastic Solutions for Soil and Rock Mechanics. Centre for Geotech-
nical Research, University of Sydney, 1991.
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34 BE31: Snap-Through Behaviour of a Truss

Overview

Element Type(s): TRUS

Analysis Type(s): STAT, GNL

Procedure(s): LSTP

Topic(s):

Module(s): ASE

Input file(s): snap through.dat

34.1 Problem Description

This problem is concerned with one of the fundamental geometric non-linearity (GNL) tests. A simple
two-node truss, as shown in Fig. 34.1, is examined in terms of the limit load and snap-through behaviour.

H

P

L

Figure 34.1: Problem Description

34.2 Reference Solution

In this problem a truss is pin-jointed to a rigid surface at one end and subjected to a transverse vertical
point force at the other end as shown in Fig. 34.1. The loaded end is restrained to move only vertically
and the truss in inclined with respect to the horizontal. This problem is effectively a symmetrical half
of a two-bar structure and is utilised here in order to demonstrate the snap-through behaviour and limit
points. The analytical solution assuming a shallow strut is given by [34] [14]

P =
EAH3

2L3

�

2

H
+
32

H2
+
3

H3

�

(34.1)

where the parameters H and L are shown in Fig. 34.1. The reference solution is plotted in Fig. 34.2.The
load-displacement curve rises until it reaches a limit point A. If we continue further, the next point will be
B, where the bar is horizontal and the vertical load reduces to zero. Further increments cause the bar to
deflect below the horizontal axis until the second limit point is reached at point C. Note that after point
B, the load reverses its sign and acts upwards. After point C, the bar continues its motion downwards
until it reaches point D, where the vertical load is zero.

Note that under load-control approach, snap-through behaviour occurs after the first limit point A, where
the bar suddenly jumps from point A to point E without any increase in the load. By switching from load-
control to displacement-control, i.e. the displacement rather than the load is applied in small increments,
the solution is able to progress beyond the limit point A, where further displacements cause the load to
reduce as the bar reaches a horizontal position at B.
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Figure 34.2: Analytical Load-Displacement Curve

34.3 Model and Results

The properties of the model are defined in Table 34.1. In the load-control approach, the load is applied
in significantly small increments in order to be able to capture point A. In the displacement-control, the
displacement increments are of 1 mm. The load-displacement curve for both approaches is presented
in Fig. 34.3 and compared to the analytical solution. If we solve Eq. 34.1 with respect to the limit points,
we observe that at point A the displacement is 10.57 mm and the corresponding critical loading is Pcr
= 9.6225 N.

Table 34.1: Model Properties

Material Properties Geometric Properties Loading

E = 500 × 103 N/mm2 H = 25mm P = 10N

ν = 0.4999 ≈ 0.5 L = 2500mm Δ = 1mm

A = 100mm2

Fig. 34.3 shows that the load-control approach reaches the first limit point and suddenly snaps to the
new equilibrium state, corresponding to point E in Fig. 34.2. The value of the load obtained before the
snap-through occurs, corresponding to point A, is P = 9.62 N, with a displacement of 10.415 mm,
which is in very good agreement with the theoretical critical value Pcr . Furthermore, we can observe that
the more suitable solution strategy, for such a simple system, for obtaining the load-deflection response
is to adopt the displacement control approach, which clearly as shown in Fig. 34.3, has no difficulty with
the local limit point at A and traces the complete equilibrium path.
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Figure 34.3: Calculated Load-Displacement Curve

34.4 Conclusion

This example verifies the determination of the limit load and snap-through behaviour of a simple truss.
It has been shown that the geometric non-linear behaviour of the model is captured accurately.

34.5 Literature

[14] A. A. Becker. Background to Finite Element Analysis of Geometric Non-linearity Benchmarks.
Tech. rep. NAFEMS, 1998.

[34] M. A. Crisfield. Non-linear Finite Element Analysis of Solids and Structures - Volume 1. John Wiley,
1991.
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35 BE32: Thermal Extension of Structural Steel in case
of Fire

Overview

Element Type(s): BF2D, SH3D

Analysis Type(s): STAT, MNL

Procedure(s): LSTP

Topic(s): FIRE

Module(s): TALPA, ASE

Input file(s): thermal extension, quad 32.dat

35.1 Problem Description

This benchmark is concerned with the validation of the structural analysis in case of fire with respect to
the general calculation method according to DIN EN 1992-1-2. Therefore test case 4 is employed as
presented in Annex CC of the standard DIN EN 1992-1-2/NA:2010-03 [35]. In this example the validation
of the extension of structural steel, for the model of Fig. 35.1, at different constant temperature exposures
is examined.

h



b

Figure 35.1: Problem Description

35.2 Reference Solution

The physical, mechanical and mathematical basics of engineering-based fire design programs, should
be validated in terms of thermal, cross-sectional and system analysis. The aim of Annex CC [35] is,
through a collection of test cases, to check their applicability for fire proof evaluation on real structures.
For every example a parameter-dependent test matrix, for the relevant assessment criteria, is provided,
where the computational accuracy of the program is examined. Results of existing analytical solutions
or of approved programs are also provided, as well as the acceptable specified tolerances.

35.3 Model and Results

The properties of the model are defined in Table 35.1. A fictional beam, as depicted in Fig. 35.1, with
cross-sectional dimensions b / h = 100/100 mm and the length of 100 mm is examined. Different
temperatures are assigned to the material S 355 of the cross-section. The analysis is performed with
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TALPA, where the FIBER beam element is utilised, as well as with ASE, where the QUAD element is
tested. The computed and the reference results are presented in Table 35.2, Fig. 35.2 and Table 35.3
for the FIBER beam and QUAD element, respectively.

Table 35.1: Model Properties

Material Properties Geometric Properties Test Properties

S 355  = 100mm Initial Conditions:

ƒyk(20◦C) = 355N/mm2 h = 100mm Θ = 20◦C

Stress-strain curve
according to DIN EN
1993-1-2

b = 100mm Homogeneous temperature component:
Θ = 100, 300, 500, 600, 700, 900◦C

Table 35.2: Results for Thermal Elongation of Steel - FIBER

Θ [◦ C] Ref. [35] SOF. |er | [%] Tol.

Δ [mm] Δ’ [mm] or e [mm]

100 0.09984 0.09984 0.000 mm for Θ ≤ 300 ◦ C

300 0.37184 0.37184 0.000 mm ± 0.05 mm

500 0.67584 0.67584 0.000 %

600 0.83984 0.83984 0.000 % for Θ > 300 ◦ C

700 1.01184 1.01184 0.000 % ± 1 %

900 1.18000 1.18000 0.000 %

Table 35.3: Results for Thermal Elongation of Steel - QUAD

Θ [◦ C] Ref. [35] SOF. |er | [%] Tol.

Δ [mm] Δ’ [mm] or e [mm]

100 0.09984 0.09984 0.000 mm for Θ ≤ 300 ◦ C

300 0.37184 0.37184 0.000 mm ± 0.05 mm

500 0.67584 0.67584 0.000 %

600 0.83984 0.83984 0.000 % for Θ > 300 ◦ C

700 1.01184 1.01184 0.000 % ± 1 %

900 1.18000 1.18000 0.000 %
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Figure 35.2: Temperature Strains

35.4 Conclusion

This example verifies the extension of structural steel at different constant temperature exposures. It
has been shown that the calculation results are in excellent agreement with the reference results.

35.5 Literature

[35] DIN EN 1991-1-2/NA: Eurocode 1: Actions on structures, Part 1-2/NA: Actions on structures ex-
posed to fire. CEN. 2010.
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36 BE33: Work Laws in case of Fire for Concrete and
Structural Steel

Overview

Element Type(s): BF2D, SH3D

Analysis Type(s): STAT, MNL

Procedure(s): LSTP

Topic(s): FIRE

Module(s): TALPA, ASE

Input file(s): temperature compression.dat, quad 33.dat

36.1 Problem Description

This benchmark is concerned with the validation of the structural analysis in case of fire with respect to
the general calculation method according to DIN EN 1992-1-2. Therefore test case 5 is employed as
presented in Annex CC of the standard DIN EN 1992-1-2/NA:2010-03 [35]. In this example the validation
of the change in length of structural steel and concrete in compression, for the model of Fig. 36.1, at
varying temperature and load capacity levels, is investigated.

σ

h



b

Figure 36.1: Problem Description

36.2 Reference Solution

The aim of Annex CC [35] is to check the applicability of the programs for engineering-based fire de-
sign on real structures. In this case the influence of the combination of increasing temperature and
compressive loading with respect to the loading capacity of the structure is examined.

36.3 Model and Results

The properties of the model are defined in Table 36.1. A fictional beam as depicted in Fig. 36.1 is
examined here, for the case of structural steel S 355 and of concrete C 20/25, with cross-sectional
dimensions b / h = 10 / 10mm,  = 100mm and b / h = 31.6 / 31.6mm,  = 100mm, respectively.
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Different temperatures and load levels are investigated. The boundary conditions are set such that
stability failure is ruled out. The analysis is performed with TALPA, where the FIBER beam element
is utilised. The computed and the reference results are presented in Table 36.2 for structural steel
and in Table 36.3 for concrete. Fig. 36.2 presents stress-strain curves for structural steel for different
temperature levels.

Table 36.1: Model Properties

Material Properties Geometric Properties Test Properties

Steel Concrete Steel Concrete

S 355 C 20/25  = 100mm  = 100mm Initial Conditions:

ƒyk = 355MP ƒck = 20MP h = 100mm h = 31.6mm Θ = 20◦C

Stress-strain: Stress-strain: b = 10mm b = 31.6mm Homog. temp.:

DIN EN 1993-1-2 DIN EN 1992-1-2 20,200,400,

600,800◦C

Loading:

σs(Θ) / ƒyk(Θ)

or

σc(Θ) / ƒck(Θ) =
0.2,0.6,0.9

Table 36.2: Results for Structural Steel - FIBER

Θ [◦ C] Ref. [35] SOF. er [%] Tol.

σs(Θ) / ƒyk(Θ) Δ [mm] Δ’ [mm] [%]

20 0.2 0.034 0.034 0.560

0.6 0.101 0.101 −0.424

0.9 0.152 0.152 −0.094

200 0.2 −0.194 −0.194 −0.141

0.6 −0.119 −0.119 −0.119

0.9 0.159 0.156 1.794

400 0.2 −0.472 −0.472 0.097

0.6 −0.293 −0.294 −0.305 ± 3 %

0.9 0.451 0.449 0.525

600 0.2 −0.789 −0.789 0.053

0.6 −0.581 −0.581 −0.054

0.9 0.162 0.160 1.245

800 0.2 −1.059 −1.059 0.030
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Table 36.2: (continued)

Θ [◦ C] Ref. [35] SOF. er [%] Tol.

σs(Θ) / ƒyk(Θ) Δ [mm] Δ’ [mm] [%]

0.6 −0.914 −0.914 −0.028

0.9 −0.170 −0.172 −1.164

Table 36.3: Results for Concrete - FIBER

Θ [◦ C] Ref. [35] SOF. er [%] Tolerance

σs(Θ) / ƒyk(Θ) Δ [mm] Δ’ [mm] [%]

20 0.2 0.0334 0.0334 0.074

0.6 0.104 0.1036 0.428

0.9 0.176 0.1763 −0.173

200 0.2 −0.107 −0.1070 0.024

0.6 0.0474 0.0474 −0.035

0.9 0.2075 0.2075 0.014

400 0.2 −0.356 −0.3557 0.085

0.6 −0.075 −0.0750 0.016 ± 3 %

0.9 0.216 0.2160 −0.009

600 0.2 −0.685 −0.6850 −0.007

0.6 0.0167 0.0167 −0.182

0.9 0.744 0.7442 −0.033

800 0.2 −1.066 −1.0662 −0.023

0.6 −0.365 −0.3645 0.145

0.9 0.363 0.363 −0.010

Next step is the analysis of the same example with ASE where the QUAD element is now tested. The
results are presented in Table 36.4 for structural steel and in Table 36.5 for concrete.

Table 36.4: Results for Structural Steel - QUAD

Θ [◦ C] Ref. [35] SOF. er [%] Tolerance

σs(Θ) / ƒyk(Θ) Δ [mm] Δ’ [mm] [%]

20 0.2 0.034 0.034 0.560

0.6 0.101 0.101 −0.424

0.9 0.152 0.152 −0.094
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Table 36.4: (continued)

Θ [◦ C] Ref. [35] SOF. er [%] Tolerance

σs(Θ) / ƒyk(Θ) Δ [mm] Δ’ [mm] [%]

200 0.2 −0.194 −0.194 −0.208

0.6 −0.119 −0.120 −0.448

0.9 0.159 0.151 5.341

400 0.2 −0.472 −0.472 0.010

0.6 −0.293 −0.297 −1.447 ± 3 %

0.9 0.451 0.422 6.396

600 0.2 −0.789 −0.790 −0.103

0.6 −0.581 −0.589 −1.302

0.9 0.162 0.130 19.626

800 0.2 −1.059 −1.060 −0.093

0.6 −0.914 −0.920 −0.657

0.9 −0.170 −0.202 −18.540

Table 36.5: Results for Concrete - QUAD

Θ [◦ C] Ref. [35] SOF. er [%] Tolerance

σs(Θ) / ƒyk(Θ) Δ [mm] Δ’ [mm] [%]

20 0.2 0.0334 0.0334 0.081

0.6 0.1040 0.1036 0.429

0.9 0.1760 0.1763 −0.173

200 0.2 −0.1070 −0.1070 0.019

0.6 0.0474 0.0474 −0.037

0.9 0.2075 0.2075 0.015

400 0.2 −0.3560 −0.3557 0.082

0.6 −0.0750 −0.0750 0.014 ± 3 %

0.9 0.2160 0.2160 −0.008

600 0.2 −0.6850 −0.6851 −0.010

0.6 0.0167 0.0167 −0.207

0.9 0.7440 0.7442 −0.033

800 0.2 −1.0660 −1.0663 −0.025

0.6 −0.3650 −0.3645 0.147

0.9 0.3631 0.3630 −0.014
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Figure 36.2: Steel Loading Strains

36.4 Conclusion

This example verifies the change in length of structural steel and concrete at different temperature and
load levels. It has been shown that the calculation results with TALPA and the FIBER beam element are
in very good agreement with the reference results. For the case of the QUAD layer element the results
present some deviation only for the structural steel and specifically for the case of a high stress level,
reaching the 90% of the steel strength.

36.5 Literature

[35] DIN EN 1991-1-2/NA: Eurocode 1: Actions on structures, Part 1-2/NA: Actions on structures ex-
posed to fire. CEN. 2010.
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37 BE34: Ultimate Bearing Capacity of Concrete and
Steel under Fire

Overview

Element Type(s): BF2D, SH3D

Analysis Type(s): STAT, MNL

Procedure(s): LSTP

Topic(s): FIRE

Module(s): TALPA, ASE

Input file(s): capacity.dat, quad 34.dat

37.1 Problem Description

This benchmark is concerned with the validation of the structural analysis in case of fire with respect to
the general calculation method according to DIN EN 1992-1-2. Therefore test case 6 is employed as
presented in Annex CC of the standard DIN EN 1992-1-2/NA:2010-03 [35]. In this example the ultimate
bearing capacity of structural steel and concrete in compression, for the model of Fig. 37.1, at varying
temperature levels, is investigated.

σ

h



b

Figure 37.1: Problem Description

37.2 Reference Solution

The aim of Annex CC [35] is to check the applicability of the programs for engineering-based fire design
on real structures. In this case the influence of the combination of temperature and compressive loading,
on the ultimate bearing capacity is examined.

37.3 Model and Results

The properties of the model are defined in Table 37.1. A fictional beam as depicted in Fig. 37.1 is
examined here, for the case of structural steel S 355 and of concrete C 20/25, with cross-sectional
dimensions b / h = 10 / 10 mm,  = 100 mm and b / h = 31.6 / 31.6 mm,  = 100 mm, respec-
tively. The boundary conditions are set such that stability failure is ruled out. The analysis is performed
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with TALPA, where the FIBER beam element is utilised. The computed and the reference results are
presented in Table 37.2 for structural steel and in Table 37.3 for concrete.

Table 37.1: Model Properties

Material Properties Geometric Properties Test Properties

Steel Concrete Steel Concrete

S 355 C 20/25  = 100mm  = 100mm Initial Conditions:

ƒyk = 355MP ƒck = 20MP h = 100mm h = 31.6mm Θ = 20◦C

Stress-strain: Stress-strain: b = 10mm b = 31.6mm Homog. temp.:

DIN EN 1993-1-2 DIN EN 1992-1-2 20,200,400,

600,800◦C

Table 37.2: Results for Structural Steel - FIBER beam

Θ [◦ C] Ref. [35] SOF. e [kN] er [%] Tol.

NR,ƒ ,k [kN] NR,ƒ ,k ’ [kN]

20 −35.5 −35.5 0.000 0.000

200 −35.5 −35.5 0.000 0.000 ± 3 %

400 −35.5 −35.5 0.000 0.000 and

600 −16.7 −16.7 −0.015 0.090 ± 0.5 [kN]

800 −3.9 −3.9 0.005 −0.128

Table 37.3: Results for Concrete - FIBER beam

Θ [◦ C] Ref. [35] SOF. e [kN] er [%] Tol.

NR,ƒ ,k [kN] NR,ƒ ,k ’ [kN]

20 −20.0 −20.0 −0.029 0.144

200 −19.0 −19.0 −0.027 0.144 ± 3 %

400 −15.0 −15.0 −0.022 0.144 and

600 −9.0 −9.0 −0.013 0.144 ± 0.5 [kN]

800 −3.0 −3.0 −0.004 0.144

Next step is the analysis of the same example with ASE where the QUAD element is now tested. The
results are presented in Table 4 for structural steel and in Table 5 for concrete.
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Table 37.4: Results for Structural Steel - QUAD

Θ [◦ C] Ref. [35] SOF. e [kN] er [%] Tol.

NR,ƒ ,k [kN] NR,ƒ ,k ’ [kN]

20 −35.5 −35.5 0.000 0.000

200 −35.5 −35.5 0.000 0.000 ± 3 %

400 −35.5 −35.5 0.000 0.000 and

600 −16.7 −16.7 −0.015 0.090 ± 0.5 [kN]

800 −3.9 −3.9 0.005 −0.128

Table 37.5: Results for Concrete - QUAD

Θ [◦ C] Ref. [35] SOF. e [kN] er [%] Tol.

NR,ƒ ,k [kN] NR,ƒ ,k ’ [kN]

20 −20.0 −20.0 −0.029 0.144

200 −19.0 −19.0 −0.037 0.193 ± 3 %

400 −15.0 −15.0 −0.023 0.156 and

600 −9.0 −9.0 −0.013 0.150 ± 0.5 [kN]

800 −3.0 −3.0 −0.015 0.489

37.4 Conclusion

This example verifies the influence of compressive loading on the ultimate bearing capacity under differ-
ent temperature levels. It has been shown that the calculation results are in very good agreement with
the reference results for both the QUAD layer element and the FIBER beam element.

37.5 Literature

[35] DIN EN 1991-1-2/NA: Eurocode 1: Actions on structures, Part 1-2/NA: Actions on structures ex-
posed to fire. CEN. 2010.
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38 BE35: Calculation of Restraining Forces in Steel
Members in case of Fire

Overview

Element Type(s): BF2D, SH3D

Analysis Type(s): STAT, MNL

Procedure(s): LSTP

Topic(s): FIRE

Module(s): TALPA, ASE

Input file(s): restraining forces.dat, quad 35.dat

38.1 Problem Description

This benchmark is concerned with the validation of the structural analysis in case of fire with respect to
the general calculation method according to DIN EN 1992-1-2. Therefore test case 7 is employed as
presented in Annex CC of the standard DIN EN 1992-1-2/NA:2010-03 [35]. In this example the restrain-
ing forces developed in an immovable steel member due to temperature exposure are investigated for
the model of Fig. 38.1.



h

Θo

Θ

Figure 38.1: Problem Description

38.2 Reference Solution

The aim of Annex CC [35] is to check the applicability of the programs for engineering-based fire design
on real structures. In this case the influence of temperature exposure on the development of restraining
forces in steel is investigated. To illustrate the development of the restraining forces, consider a steel
bar fixed at both ends and exposed to fire. As the bar is heated it tries to expand. However, the fixture
prevents expansion in the longitudinal direction. Thus, the fixture exerts restraining forces on the bar.
Since the bar is prevented from longitudinal expansion, it is possible to expand in the other directions.

38.3 Model and Results

The properties of the model are defined in Table 38.1. A beam with cross-sectional dimensions b/h =
100/100 mm,  = 1000 mm and fixed at both ends, as depicted in Fig. 38.1, is examined here. The
material of the cross-section is structural steel with a fictive yield strength of ƒyk(20◦C) = 650 N/mm2

and thermo-mechanical properties according to EN 1993-1-2. The model is exposed to different tem-
peratures. In the first case the same temperature is assigned across the cross-section height, whereas
in the second case, the temperature difference of the upper and lower fiber is 200◦C. The analysis is
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performed with TALPA, where the FIBER beam element is utilised. The computed and the reference
results are presented in Table 38.2.

Table 38.1: Model Properties

Material Properties Geometric Properties Test Properties

ƒyk(20◦C) = 650N/mm2  = 1000mm Case 1

E(20◦C) = 210000N/mm2 h = 100mm Θo = 120◦, C Θ = 120◦C

Stress-strain curve b = 100mm Case 2

according to DIN EN 1993-1-2 Θo = 20◦, C Θ = 220◦C

Table 38.2: Results for Structural Steel - FIBER beam

Temperature Load Ref. [35] SOF. |er | [%] Tol.

Θ [◦ C] X X’ [%]

120/120

NZ [kN] −2585.0 −2584.8 0.006 ± 1

MZ [kNm] 0.0 0.0 0.000 ± 1

σZ [N/mm2] −258.5 −258.5 0.006 ± 5

20/220

NZ [kN] −2511.0 −2503.9 0.282 ± 1

MZ [kNm] −40.3 −40.2 0.249 ± 1

σZ [N/mm2] −479.0 −479.0 0.000 ± 5

Next step is the analysis of the same example with ASE where the QUAD element is now tested. The
results are presented in Table 38.3 for both temperature loads.

Table 38.3: Results for Structural Steel - QUAD

Temperature Load Ref. [35] SOF. |er | [%] Tol.

Θ [◦ C] X X’ [%]

120/120

NZ [kN] −2585.0 −2595.7 0.414 ± 1

MZ [kNm] 0.0 0.0 0.000 ± 1

σZ [N/mm2] −258.5 −258.98 0.186 ± 5

20/220

NZ [kN] −2511.0 −2539.7 1.14 ± 1

MZ [kNm] −40.3 −41.23 2.31 ± 1

σZ [N/mm2] −479.0 −484.65 1.180 ± 5
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For the quad element, the results appear to deviate from the reference solution. This is due to the fact
that, as the plasticity involves at the cross-section, plastic strains appear also in the lateral direction1.
This causes a biaxial stress state (σ 6= 0), which is not neglected by the quad formulation, as shown in
Fig. 38.2, and has an effect on both the stresses and moments in the y direction.

Figure 38.2: Nonlinear Stresses for Temperature 220 ◦C at Bottom Quad Layer

38.4 Conclusion

This example verifies the development of restraining forces in steel due to temperature exposure. It has
been shown that the calculation results are in very good agreement with the reference results for both
the QUAD layer element and the FIBER beam element.

38.5 Literature

[35] DIN EN 1991-1-2/NA: Eurocode 1: Actions on structures, Part 1-2/NA: Actions on structures ex-
posed to fire. CEN. 2010.

1In the case of quad elements, μ is set to 0 for the better representation of the boundary conditions and the results.
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39 BE36: Pushover Analysis: Performance Point Calcu-
lation by ATC-40 Procedure

Overview

Element Type(s):

Analysis Type(s):

Procedure(s):

Topic(s): EQKE

Module(s): SOFiLOAD

Input file(s): pushover-pp-atc.dat

39.1 Problem Description

The following example is intended to verify the ATC-40 procedure for the calculation of the performance
point (illustrated schematically in Fig. 39.1), as implemented in SOFiSTiK. The elastic demand and
capacity diagrams are assumed to be know.

SdSdp

S

Sp

El. Demand Diagram

Performance Point

Capacity Diagram

Demand Diagram

Figure 39.1: Determination of the performance point PP (Sdp, Sp)

39.2 Reference Solution

The reference solution is provided in [36], 8.3.3.3 ”Performance Point Calculation by Capacity Spectrum
Method - Procedure A”.

Assuming that the elastic demand diagram (5% elastic response spectrum in ADRS format1 ) and the
capacity diagram are known, it is possible to determine the performance point PP (Sdp, Sp) (Fig. 39.1).
The procedure comprises of a series of trial calculations (trial performance points PPt (Sdp,t , Sp,t)),
in which the equivalent inelastic single degree of freedom system (SDOF), represented by the capacity
diagram, is transformed to an equivalent elastic SDOF system whose response in form of the perfor-
mance point PP is then calculated from the reduced elastic response spectrum (demand diagram). The
computation stops when the performance point PP is within a tolerance of a trial performance point PPt.
The ATC-40 Procedure A is a semi-analytical procedure since it involves graphical bilinear idealization
of the capacity diagram. Detailed description of this step-by-step procedure can be found in [36].

1ADRS = Spectral Acceleration S - Spectral Displacement Sd format

SOFiSTiK 2020 | VERiFiCATiON - Mechanical Benchmarks 161



BE36: Pushover Analysis: Performance Point Calculation by ATC-40 Procedure

39.3 Model and Results

In order to verify the analysis procedure for the determination of the performance point, a test case has
been set up in such a way that it comprises of a SDOF with a unit mass and a non-linear spring element.
It is obvious that for such an element the quantities governing the transformation from the original system
to the equivalent inelastic SDOF system must be equal to one, i.e.

ϕcnod = 1 ;  = 1 ; m = 1 , (39.1)

where ϕcnod is the eigenvector value at control node,  is the modal participation factor and m is the
generalized modal mass. Writing now the equations which govern the conversion of the pushover curve
to capacity diagram, we obtain [37]

Sd =
cnod

ϕcnod · 
= cnod , (39.2a)

S =
Vb

2 ·m
= Vb , (39.2b)

where Vb is the base shear and cnod is the control node displacement.

Since the original system is a SDOF system, Vb and cnod are nothing else but the force in spring P
and the displacement of the unit mass , respectively. It follows further that the force-displacement work
law assigned to the spring element corresponds to the capacity diagram in ADRS format, with the force
P and displacement  equal to S and Sd, respectively.

The capacity diagram used in the reference example is defined by four points, whose coordinates are
listed in the Table 39.1. According to the analysis above, these points can be used to define the force-
displacement work law P −  of the non-linear spring element (Fig.39.2).

Table 39.1: Model Properties [36]

Capacity Diagram Elastic Demand

Point
�

Sd[mm], S[m/s2]
�

UBC 5% Elastic Response Spectrum.

A ( 48.77, 2.49) Seismic Zone 4, ZEN = 0.40.

B ( 71.37, 3.03) No near-fault effects.

C ( 96.01, 3.39) Soil Profile:

D (199.14, 3.73) - Type SB: CA = 0.40, CV = 0.40

- Type SD: CA = 0.44, CV = 0.64
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Figure 39.2: Force-displacement work law of the non-linear spring

The elastic demand is an UBC 5% damped elastic response spectrum, whose properties are summa-
rized in Table 39.1. Two soil profile types are considered - soil profile type SB and SD.

The outcome of the analysis is shown in Figures 39.3 and 39.4.
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Figure 39.3: Capacity-Demand-Diagram (Soil Profile Type SB)
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Figure 39.4: Capacity-Demand-Diagram (Soil Profile Type SD)
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The results of the SOFiSTiK calculation and the comparison with the reference solution are summarized
in Table 39.2.

Table 39.2: Results

ξeƒ ƒ SR SR Sdy Sy Sdp Sp

Soil type [%] [−] [−] [mm] [m/s2] [mm] [m/s2]

SOF. 9.4 0.80 0.84 51.30 2.62 85.04 3.23

SB Ref. [36] 9.2 0.80 0.85 53.34 2.65 83.36 3.24

|e| [%] 2.2 0.0 1.2 3.8 1.1 2.0 0.3

SOF. 14.6 0.65 0.73 59.86 3.06 149.34 3.57

SD Ref. [36] 14.2 0.66 0.74 58.42 3.04 149.86 3.63

|e| [%] 2.8 1.5 1.4 2.5 0.7 0.3 1.7

ξeƒ ƒ effective viscous damping of the equivalent linear SDOF system
SR, SR spectral reduction factors in constant acceleration and constant velocity

range of spectrum
Sdy, Sy spectral displacement and spectral acceleration at yielding point
Sdp, Sp spectral displacement and spectral acceleration at performance point

The results are in excellent agreement with the reference solution. Small differences can mainly be
attributed to the approximate nature of the graphical procedure for the bilinear idealization of the capacity
used in the reference solution, while the procedure implemented in SOFiLOAD is refrained from such
approximation and computes the hysteretic energy directly from the area underneath the capacity curve
and the coordinates of the performance point [37]. Apart from that, the performance point displacement
tolerance used in SOFiLOAD is lower than the one used in the reference solution (1% compared to
5%).

39.4 Conclusion

Excellent agreement between the reference and the results computed by SOFiSTiK verifies that the
procedure for the calculation of the performance point according to ATC-40 is adequately implemented.

39.5 Literature

[36] ATC-40. Seismic Evaluation and Retrofit of Concrete Buildings. Applied Technology Council. Red-
wood City, CA, 1996.

[37] SOFiLOAD Manual: Loads and Load Functions. Version 2018-0. SOFiSTiK AG. Oberschleißheim,
Germany, 2017.

164 VERiFiCATiON - Mechanical Benchmarks | SOFiSTiK 2020



BE37: Beam Calculation of Varying Cross-Section according to Second Order
Theory

40 BE37: Beam Calculation of Varying Cross-Section ac-
cording to Second Order Theory

Overview

Element Type(s): B3D

Analysis Type(s): STAT, GNL

Procedure(s): STAB

Topic(s):

Module(s): ASE, STAR2, DYNA

Input file(s): beam th2.dat

40.1 Problem Description

The problem consists of a column of continuously varying cross-section, subjected to a large compres-
sive force in combination with imperfections as well as horizontal and temperature loads, as shown in
Fig. 40.1. The forces and deflections of the structure, calculated according to second order theory, are
determined.

h

t
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ψ0
∗



A

E

qEH

H∗

ΔT

qA

V

∗

∗

s

b

Figure 40.1: Problem Description

40.2 Reference Solution

This example attempts to give a complete description of the forces and the deflections of a beam with
varying cross-section calculated with second order theory. As a reference solution, a general formulation
concept is adopted, where through the application of series functions, uniform formulas can be derived
to describe the beam behaviour of varying cross-section. In this concept, the cross-section properties
can vary according to a polynomial of arbitrary degree, the normal force, with respect to second order
theory, is assumed constant, the imperfections or predeformations as well as the temperature loads
are taken into account and the deformations due to moments and normal forces are treated. Further
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information on the reference solution can be found in Rubin (1991) [38].

40.3 Model and Results

The general properties of the model [38] are defined in Table 40.1 and the cross-sections in Table 40.2.
A general linear material is used and a linearly varying, thin-walled I-beam profile for the cross-section.
The shear deformations are neglected. A safety factor of 1.35 is used for the dead weight, giving a
total normal force of N = −0.5 − 0.0203 = −0.5203 MN. An imperfection of linear distribution with
maximum value of 60 mm at node E is applied, as well as one of quadratic distribution with maximum
value of −48mm at the middle. The temperature load is given as a difference of temperature of 25◦C,
between the left and the right side of the beam. The height of the cross-section is taken as the height of
the web only. Second order theory is utilised and the structure is analysed both with ASE and STAR2.

Table 40.1: Model Properties

Model Properties Loading

E = 21MN/cm2, γg = 1.35 V = 500 kN

ψ0 = 1/200, 0 = −48mm qE = 6 kN/m, qA = 10 kN/m

αT = 1.2 × 10−5 1/◦K ΔT = Trght − Teƒ t = −25 ◦C

 = 12m, ∗ = 4m H = 20 kN, H∗ = 10 kN

Table 40.2: Cross-sectional Properties

Position
Web [mm] Flange [mm] Area [cm2] y [cm4]

h s b t

E 200 12 194 20 101.6 8560

∗ 300 12 260.7 20 140.27 26160.3

A 500 12 394 20 217.6 111000

M [kNm]  [mm]N [kN] ϕ [mrd]  [mm]

Figure 40.2: Results with Twenty Four Beam Elements calculated by ASE
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The results are presented in Table 40.3, where they are compared to the reference solution according
to Rubin (1991) [38]. Fig. 40.2 shows the forces and deflections of the structure as they have been
calculated by ASE with twenty four beam elements.

Table 40.3: Results

Number of ϕE E E MA NA NE NK 

Elements [mrd] [mm] [mm] [MNm] [MN] [MN] [MN]

- Ref. [38] 67.70 423.50 −1.9050 −1.10 −0.5203 −0.50 −1.882

3
ASE 63.8819 402.8733 −1.8937 −1.0816 −0.5202 −0.50 −1.9556

STAR2 82.1398 508.5219 −1.9288 −1.1352 −0.5203 −0.50 -

6
ASE 65.8787 413.7793 −1.9018 −1.0871 −0.5203 −0.50 −1.8993

STAR2 70.0395 437.2366 −1.9108 −1.0990 −0.5203 −0.50 -

24
ASE 66.5406 417.2853 −1.9045 −1.0888 −0.5203 −0.50 −1.8827

STAR2 66.7933 418.7001 −1.9050 −1.0895 −0.5203 −0.50 -

40.4 Conclusion

This example examines the behaviour of a tapered beam, treated with second order theory. The re-
sults, calculated both with ASE and STAR2, converge to the same solution as the number of elements
increases. Their deviation arises from the fact that ASE uses an exponential interpolation based on area
and inertia as well as numerical integration of the stiffness, while STAR2 uses the geometric mean value
of the stiffness. The first is slightly too stiff, the latter is too soft and therefore resulting on the safe side.
With a total of twenty four beam elements, the results are reproduced adequately. However, the obtained
solution deviates from the reference. The reason for that is the fact, that for second order effects, Rubin
has taken an unfavourable constant normal force of −520.3 kN for the whole column. If that effect is
accounted for, the results obtained with twenty four elements are:

Table 40.4: Results with Constant Normal Force

Number of ϕE E MA

Elements [mrd] [mm] [MNm]

- Ref. [38] 67.70 423.50 −1.100

24
ASE 67.657 423.27 −1.0995

STAR2 67.918 424.73 −1.1002

In the case where the example is calculated with DYNA, where a constant normal force of −520.3kN
is considered as a primary load case, leading to linearised second order theory and therefore satis-
fying Rubin’s assumption, the results converge to the reference solution. The results, calculated with
DYNA and twenty four elements, are presented in Table 40.5. Furthermore, different single loadings are
examined and the results are given in Table 40.6.
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Table 40.5: Results with DYNA

Number of ϕE E E MA NA NE

Elements [mrd] [mm] [mm] [MNm] [MN] [MN]

- Ref. [38] 67.70 423.50 −1.9050 −1.10 −0.5203 −0.50

24 DYNA 67.6569 423.2766 −1.9045 −1.0994 −0.5203 −0.50

Table 40.6: Results with DYNA for Combination of Constant Normal Force and Single Loadings

Load ϕE E MA

Case [mrd] [mm] [MNm]

H∗, H 23.6779 148.3151 −0.3972

q 22.5896 163.3797 −0.6130

ΔT 14.8218 77.1333 −0.0401

ψ0 2.6481 15.9532 −0.0395

0 3.9194 18.4953 −0.0096
∑

67.6569 423.2766 −1.0994

40.5 Literature

[38] H. Rubin. “Ein einheitliches, geschlossenes Konzept zur Berechnung von Stäben mit stetig
verändlichem Querschnitt nach Theorie I. und II. Ordnung”. In: Bauingenieur 66 (1991), pp. 465–
477.
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41 BE38: Calculation of Slope Stability by Phi-C Reduc-
tion

Overview

Element Type(s): C2D

Analysis Type(s): STAT, MNL

Procedure(s): LSTP, PHIC

Topic(s): SOIL

Module(s): TALPA

Input file(s): slope stability.dat

41.1 Problem Description

In this benchmark the stability of an embankment, as shown in Fig. 41.1, is calculated by means of a
ph − c reduction. The factor of safety and its corresponding slip surface are verified.

αslope

h 1

h 2

l1 l2lslope

Figure 41.1: Problem Description

41.2 Reference Solution

The classical problem of slope stability analysis involves the investigation of the equilibrium of a mass of
soil bounded below by an assumed potential slip surface and above by the surface of the slope. Forces
and moments, tending to cause instability of the mass, are compared to those tending to resist instabil-
ity. Most procedures assume a two-dimensional cross-section and plane strain conditions for analysis.
Successive assumptions are made regarding the potential slip surface until the most critical surface, i.e.
lowest factor of safety, is found. If the shear resistance of the soil along the slip surface exceeds that
necessary to provide equilibrium, the mass is stable. If the shear resistance is insufficient, the mass
is unstable. The stability of the mass depends on its weight, the external forces acting on it, the shear
strengths and pore water pressures along the slip surface, and the strength of any internal reinforcement
crossing potential slip surfaces. The factor of safety is defined with respect to the shear strength of the
soil as the ratio of the available shear strength to the shear strength required for equilibrium [39]:

FS =
be sher strength

eqbrm sher stress
(41.1)

SOFiSTiK 2020 | VERiFiCATiON - Mechanical Benchmarks 169



BE38: Calculation of Slope Stability by Phi-C Reduction

The safety definition according to FELLENIUS is based on the investigation of the material’s shear
strength in the limit state of the system, i.e. the shear strength that leads to failure of the system.

Following this notion, in SOFiSTiK, the safety factors according to ph − c reduction are defined as the
ratio between available shear strength and the mobilized shear strength in the limit state of the system
[40]:

ηϕ =
tn ϕnp

tn ϕm
(41.2)

ηc =
cnp

cm
(41.3)

where c is the cohesion and ϕ the friction angle. The ph− c reduction stability analysis is based on an
incremental reduction of the shear strength adopting a synchronized increase of the safety factors η =
ηph = ηc. The reached safety η at system failure represents the computational safety against stability
failure.

The reference solution [41] is based on the finite element formulation of the upper- and lower-bound
theorems of plasticity. Thus, the finite-element limit analysis (FELA) provides a good reference for the
strength reduction method as it establishes upper and lower-bound estimates for the true stability limit.

41.3 Model and Results

The properties of the model [41] are presented in Table 41.1. The embankment has a slope height of
10 m and a slope angle of 30◦. The initial stresses are generated using gravity loading. Then the
embankment is subjected to the ph − c reduction. Plane strain conditions are assumed.

Table 41.1: Model Properties

Material Properties Geometric Properties

E = 20000 kN/m2, ν = 0.3 h1 = 20.0m

γ = 19 kN/m3 h2 = 10.0m

ϕ = 25◦, ψ = 25◦ 1 = 2 = 15.0m

c = 20 kN/m2 αsope = 30◦ , sope = 17.321m
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Figure 41.2: Nodal displacements for the factor of saftey obtained with the ph − c reduction analysis
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Figure 41.3: Deviatoric strain for the factor of saftey obtained with the ph − c reduction analysis

Figure 41.2 presents the nodal displacement as a vector distribution for the factor of safety obtained
with the ph − c reduction analysis. Furthermore, the corresponding plastic deviatoric strain is shown
in Figure 41.3. The calculated factor of safety is compared with the reference solution [41] in Table
41.2, i.e. with the results from the lower-bound and upper-bound finite element limit analysis (FELA).
Additionally, the calculated factor of safety from ph− c reduction analysis is plotted in Figure 41.4 as a
function of the nodal displacement in x direction for the node at the top of the embankment slope.

Table 41.2: Factor of saftey - calculated and reference values according to [41]

SOFiSTiK FEM FELAoer bond FELApper bond

2.00 1.97 2.01
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Figure 41.4: Factor of safety as a function of displacement in x direction for the node at the top of the
embankment slope

41.4 Conclusion

This example verifies the stability of a soil mass and the determination of the factor of safety. The
calculated factor of safety, which is obtained with the ph− c reduction method, is compared to the finite
element limit analysis results and it is shown that the behavior of the model is captured accurately.

41.5 Literature

[39] USACE Engineering and Design: Slope Stability. USACE. 2003.
[40] TALPA Manual: 2D Finite Elements in Geotechnical Engineering. 2018-0. SOFiSTiK AG. Ober-

schleißheim, Germany, 2017.
[41] F. Tschuchnigg et al. “Comparison of finite-element limit analysis and strength reduction tech-

niques”. In: Geotechnique 65(4) (2015), pp. 249–257.
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42 BE39: Natural Frequencies of a Rectangular Plate

Overview

Element Type(s): SH3D

Analysis Type(s): DYN

Procedure(s): EIGE

Topic(s):

Module(s): DYNA

Input file(s): freq plate.dat

42.1 Problem Description

This problem consists of a rectangular plate which is simply supported on all four sides, as shown in Fig.
42.1. The eigenfrequencies of the system are determined and compared to the exact reference solution
for each case.

b



Figure 42.1: Problem Description

42.2 Reference Solution

The general formula to determine the eigenfrequencies of a simply-supported thin plate, consisting of a
linear elastic homogeneous and isotropic material is given by [29], [42]

ƒm,n =
λm,n

2

2π

√

√

√

gD

γh
(42.1)

where

λm,n
2 = π2

�

m2

2
+
n2

b2

�

(42.2)

and D is the flexural rigidity of the plate
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D =
Eh3

12(1 − ν2)
(42.3)

Combining the above equations gives

ƒm,n =
π

22

�

m2 + n2
2

b2

�

√

√

√
g

γh

Eh3

12(1 − ν2)
(42.4)

where , b the dimensions of the plate, h the thickness and γh/g the mass of the plate per unit area.
The values of λm,n

2 for the first five combinations of m, n are given in Table 42.1 for a simply-supported
plate.

Table 42.1: Dimensionless parameter λm,n
2

m n λm,n
2 Mode number

1 1 32.08 1

2 1 61.69 2

1 2 98.70 3

3 1 111.03 4

2 2 128.30 5

42.3 Model and Results

The properties of the model are defined in Table 42.2 and the resulted eigenfrequencies are given in
Table 42.3. The corresponding eigenforms are presented in Fig. 42.2.

Table 42.2: Model Properties

Material Properties Geometric Properties

E = 30000MP  = 4.5m

γ = 80 kN/m3 b = 3.0m

ν = 0.3 h = 0.02m

Table 42.3: Results

Eigenfrequency Number SOF. [Hz] Ref. [Hz] |er | [%]

1 2.941 2.955 0.476

2 5.623 5.682 1.047

3 9.200 9.091 1.197

4 10.206 10.228 0.214
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Table 42.3: (continued)

Eigenfrequency Number SOF. [Hz] Ref. [Hz] |er | [%]

5 11.706 11.819 0.954

Mode 1 Mode 2

Mode 3 Mode 4

Mode 5

Figure 42.2: Eigenforms

42.4 Conclusion

The purpose of this example is to verify the eigenvalue determination of plate structures modelled with
plane elements. It has been shown that the eigenfrequencies for a simply-supported thin rectangular
plate are calculated accurately.

42.5 Literature

[29] S. Timoshenko. Vibration Problems in Engineering. 2nd. D. Van Nostrand Co., Inc., 1937.
[42] Schneider. Bautabellen für Ingenieure. 19th. Werner Verlag, 2010.
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43 BE40: Portal Frame

Overview

Element Type(s): B3D

Analysis Type(s): STAT, GNL

Procedure(s):

Topic(s):

Module(s): ASE

Input file(s): frame.dat

43.1 Problem Description

The problem consists of a rigid rectangular frame, with an imperfection at the columns, subjected to
a uniform distributed load q across the span and to various single loads, as shown in Fig. 43.1. For
the linear case, the structure is subjected to the uniform load only, whereas for the nonlinear case, all
defined loads including the imperfection are considered. The response of the structure is determined
and compared to the analytical solution.

h

cc

b



ψ0 ψ0

H

1

2

qF F

δ

Figure 43.1: Problem Description

43.2 Reference Solution

For the linear case, where only the distributed load is considered, the moments M are determined in
terms of the shear force H as follows:
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H1 = H2 =
q2

4h(k + 2)
(43.1)

M1 = M2 =
Hh

3
(43.2)

M3 = M4 = M1 − H1h (43.3)

where k = bh / c. For the nonlinear case, in order to account for the effect of the normal force and
the imperfections on the determination of the resulting forces and moments, second order theory has
to be used. The moments at nodes 1 − 4 are determined in dependency of the column characteristic
ratio ε = c

p

N/Ec, giving the influence of the normal force N = F + q/2 with respect to the column
properties, length c and bending stiffness Ec. Further information on the analytical formulas can be
found in Schneider [42].

43.3 Model and Results

The properties of the model are defined in Table 43.1. The frame has an initial geometrical imperfection
at the columns of linear distribution ψ0 = 1/200, with a maximum value of 25 mm at nodes 3 and
4. The normal force N, used to determine ε, is calculated to be 430 kN at the columns and the ratio
ε = 1.639. For the linear case the results are presented in Table 43.3 and they are compared to
the analytical solution calculated from the formulas presented in Section 43.2. For the nonlinear case,
the results are presented in Table 43.2 and they are compared to the reference example provided in
Schneider [42].

Table 43.1: Model Properties

Material Properties Geometric Properties Loading

Ec = 6000 kNm2  = 6m q = 10 kN/m

Eb = 4000 kNm2 h = 5m H = 20 kN

ψ0 = 1/200 F = 400 kN

Table 43.2: Nonlinear Case Results

Ref. [42] SOF.

M1 [kNm] 38.2 38.62

M2 [kNm] 22.5 22.52

M3 [kNm] 58.1 58.02

M4 [kNm] 58.8 58.79

δ [mm] 65.3 65.44
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Nonlinear CaseLinear Case

Figure 43.2: Bending Moments

Table 43.3: Linear Case Results

Ref. [Sect.43.2] SOF.

H1 = H2 [kN] 5.54 5.52

M1 = M2 [kNm] 9.23 9.18

M3 = M4 [kNm] 18.46 18.43

Nonlinear CaseLinear Case

Figure 43.3: Deformed Shape

43.4 Conclusion

This example examines a rigid frame under different loading conditions. It has been shown that the
behaviour of the structure is captured accurately for both the linear and the nonlinear analysis.

43.5 Literature

[42] Schneider. Bautabellen für Ingenieure. 19th. Werner Verlag, 2010.
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44 BE41: Linear Pinched Cylinder

Overview

Element Type(s): C3D

Analysis Type(s): STAT

Procedure(s):

Topic(s):

Module(s): ASE

Input file(s): cylinder.dat

44.1 Problem Description

The problem consists of a thin cylinder shell with rigid end diaphragms, which is loaded in its middle by
two oppositely directed radially point loads, as shown in Fig 44.1. The maximum deflection at the center
of the cylinder, under the point loads, is determined and verified for refined meshes [43].

1
.0

1
.0

p

p

Figure 44.1: Problem Description

44.2 Reference Solution

There is a convergent numerical solution of  = 1.8248·10−5 for the radial displacement at the loaded
points, as given by Belytschko [44]. This problem is one of the most severe tests for both inextensional
bending and complex membrane states of stress [45] .

44.3 Model and Results

The properties of the model are defined in Table 44.1. The geometric parameters and the material are
all dimensionless. The compressive point load p = 1.0 is applied radially and in opposite directions at
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the middle nodes of the cylinder, as shown in Fig. 44.1. Using symmetry, only one-eighth of the cylinder
needs to be modeled, as shown in Fig. 44.2. For the simplified model only one fourth of the load p∗
is applied at the the upper middle node, as it can be visualised in Fig. 44.2. The end of the cylinder is
supported by a rigid diaphragm [46], while at the two edges of the cylinder, parallel to the - and y- axis,
symmetry support conditions are employed. In the plane of middle of the cylinder, the displacements in
the longitudial direction, as well as the rotations around - and y- axis are fixed. The example allows
the verification of the calculation of thin shells with increasingly refined regular meshes.

Table 44.1: Model Properties

Material Properties Geometric Properties Loading

E = 3.0 · 106 MP L = 600,  = 300 p = 1.0

μ = 0.30 r = 300 p∗ = 0.25

t = 3



p∗

r

Figure 44.2: FEM model

Table 44.2: Normalised Point-Load Displacement / with Mesh Refinement

Element/Side Conforming Element Non-Conforming Element

4 0.4525 0.5917

8 0.8214 0.9057

16 0.9701 1.0082

The results are presented in Fig 44.3 and Table 44.2, where they are compared to the analytical solution
as presented in Section 44.2. Two element formulations are considered. The first one, represented by
the red curve, corresponds to the 4-node regular conforming element whereas the second, represented
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by the purple curve corresponds to the non-conforming element with six functions, offering a substantial
improvement of the results.
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Figure 44.3: Convergence Diagram

Figure 44.4: Deformed Shape

44.4 Conclusion

The example allows the verification of the calculation of thin shells. For increasing refined meshes,
the calculated result for both types of elements convergence fast to the predetermined analytical solu-
tion. The advantage of the utilisation of the non-conforming element is evident, since it is in excellent
agreement with the analytical solution for a refined mesh.
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44.5 Literature

[43] VDI 6201 Beispiel: Softwaregestütze Tragwerksberechnung - Beispiel Zylinderschale mit starren
Endscheiben, Kategorie 1: Mechanische Grundlagen. Verein Deutscher Ingenieure e. V.

[44] T. Belytschko et al. “Stress Projection for Membrane and Shear Locking in Shell Finite Elements”.
In: Computer Methods in Applied Mechanics and Engineering 53(1-3) (1985), pp. 221–258.

[45] T. Rabczuk, P. M. A. Areias, and T. Belytschko. “A meshfree thin shell method for non-linear
dynamic fracture”. In: International Journal for Numerical Methods in Engineering 72(5) (2007),
pp. 524–548.

[46] P. Krysl and T. Belytschko. “Analysis of thin shells by the element-free Galerkin method”. In: Inter-
national Journal for Solids and Structures 33(20-22) (1996), pp. 3057–3080.
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45 BE42: Thick Circular Plate

Overview

Element Type(s): C3D

Analysis Type(s): STAT

Procedure(s):

Topic(s):

Module(s): ASE

Input file(s): thick plate.dat

45.1 Problem Description

The problem consists of a circular plate with a constant area load, as shown in Fig. 45.1. The system
is modelled as a plane problem and the deflection in the middle of the plate is determined for various
thicknesses [47].

p

Figure 45.1: Problem Description

45.2 Reference Solution

Depending on the various thicknesses of the plate, the maximum deflection  in the middle of the
plate can be obtained as  = B + S, where B is the dislacement due to bending and S is the
displacement due to shear strains, determined as follows [48]:

B =
p · r4

64 · K

(5 + μ)

(5 + μ)
(45.1)

K =
E · h3

12(1 − μ2)
(45.2)
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S =
1.2 · p · r2

4 ·G · h
(45.3)

where p is the load ordinate, r the radius, E the elasticity modulus, h the plate thickness, μ the Poissons
ratio and G the shear modulus.

The maximum bending moment at the middle of the plate is independent of the plate thickness and
corresponds for the specific load case to

M = My =
p · r2

16
· (3 + μ) = 4928.125 [kNm/m] (45.4)

45.3 Model and Results

The properties of the model are defined in Table 45.1. The plate is modelled as a plane system with
three degrees of freedom, z, ϕ, ϕy, per node and z hinged at the edge, as shown in Fig. 45.1. The
weight of the system is not considered. A constant area load p = 1000 kN/m2 is applied, as shown
in Fig. 45.1. The system is modelled with 1680 quadrilateral elements, as presented in Fig. 45.2, and
a linear analysis is performed for increasing thicknesses. The results are presented in Table 45.2 where
they are compared to the analytical solution calculated from the formulas presented in Section 45.2 and
the influence of the varying thickness is assesed.

Table 45.1: Model Properties

Material Properties Geometric Properties Loading

E = 3000 kN/cm2 h = 0.5 − 2.5m p = 1000 kN/m2

G = 1300 kN/cm2 r = 5m

μ = 0.154 D = 10m

y
x

Figure 45.2: FEM model

The maximum bending moment is calculated at the middle of the plate, as M = My = 4932.244
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[kNm/m] with a deviation of 0.08 %.

Table 45.2: Results

h [m] h/D Analytical z [mm] SOF. z [mm] |er | [%]

0.50 0.05 137.413 137.440 0.02

1.00 0.10 17.609 17.618 0.05

1.50 0.15 5.431 5.437 0.11

2.00 0.20 2.418 2.421 0.14

2.50 0.25 1.321 1.324 0.23

Figure 45.3: Displacements

45.4 Conclusion

The example allows the verification of the calculation of thick plates. It has been shown, that the calcu-
lated results are in very good agreement with the analytical solution even for thicker plates.

45.5 Literature

[47] VDI 6201 Beispiel: Softwaregestütze Tragwerksberechnung - Beispiel Dicke Platte, Kategorie 1:
Mechanische Grundlagen. Verein Deutscher Ingenieure e. V.

[48] F. U. Mathiak. Ebene Flächentragwerke Teil II, Grundlagen der Plattentheorie. Hochschule
Neubrandenburg. 2011.
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46 BE43: Panel with Circular Hole

Overview

Element Type(s): C3D

Analysis Type(s): STAT

Procedure(s):

Topic(s):

Module(s): ASE

Input file(s): structured mesh.dat , unstructured mesh.dat

46.1 Problem Description

The problem consists of a rectangular panel with a circular hole in its middle, loaded by a constant linear
load p on the vertical edges, as shown in Fig. 46.1. The system is modelled as a plane stress problem
and the maximum stress at the edge of the hole is determined and verified for various meshes [49].

pp

t
L/2

h

h

d

L/2

D


A

A′

y

Figure 46.1: Problem Description

46.2 Reference Solution

The maximum stress σA,,m resulting from a load p, at the edge of the hole can be determined at
points A and A′ across a vertical cut, visualised in Fig. 46.1, as follows [50] [51]:

σA,,m = Kt · σ,nom (46.1)

where

P = p ·D = 1000 [kN] (46.2)

σ,nom =
P

t · (D − d)
= 33.33 [N/mm2] (46.3)

SOFiSTiK 2020 | VERiFiCATiON - Mechanical Benchmarks 189



BE43: Panel with Circular Hole

Kt = 3.000 − 3.140 · (d/D) + 3.667 · (d/D)2 − 1.527 · (d/D)3 , (0 < d/D < 1) (46.4)

46.3 Model and Results

The properties of the model are defined in Table 46.1. Plane stress conditions are assumed, with two
degrees of freedom, , y, per node, and a line load p = 200.0 kN/m is applied at both vertical
ends. The length of the panel is considered to be large enough in order to avoid any disturbances in the
area of the hole, due to the loaded ends. Due to symmetry conditions only one fourth of the panel is
modelled.

Table 46.1: Model Properties

Material Properties Geometric Properties Loading

E = 2.1 · 105 MP L = 15.00m p = 200.0 kN/m

ν = 0.30 D = 5.00m, d = 2.00m

h = 1.50m , t = 0.01m

[390]

[310]

[168]

[44]

(a) Structured Meshing

[804]

[424]

[140]

[44]

(b) Unstructured Meshing

Figure 46.2: FEM Models
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Four manually structured meshes, with refinement around the hole area, are considered, shown in Fig.
46.2(a), with increasing number of quadrilateral elements and the convergence behaviour is evaluated.
For the sake of comparison, unstructured meshes, shown in Fig. 46.2(b), are also considered. The
number of degrees of freedom for every mesh is given in the red brackets. The results are presented
in Fig 46.3 where they are compared to the analytical solution calculated from the formulas presented
in Section 46.2. For the case of structured meshing two element formulations are considered. The first
one, represented by the red curve, corresponds to the 4-node regular conforming element whereas the
second, represented by the purple curve corresponds to the non-conforming element with six functions.
The blue curve represents the unstructured meshing.
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Structured Mesh - Conforming Element
Structured Mesh - Non-conforming Element
Unstructured Mesh - Non-Conforming Element

Figure 46.3: Convergence Diagram

74.98

16.55

Figure 46.4: Maximum Stresses σ,m

The regular 4-node element is characterised through a bilinear accretion of the displacements and
rotations. This element is called conforming, because the displacements and the rotations between
elements do not have any jumps. The results at the gravity centre of the element represent the actual
internal force variation fairly well, while the results at the corners are relatively useless, especially the
ones at the edges or at the corners of a region. On the other hand the non-conforming elements, are
based one the idea of describing more stress states through additional functions that their value is zero
at all nodes. As a rule, these functions lead to a substantial improvement of the results, however, they
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violate the continuity of displacements between elements and thus they are called non-conforming.

46.4 Conclusion

The example allows the verification of the calculation of plane stress problems and the convergence be-
haviour of quadrilateral elements. For both types of elements, the calculated results convergence rather
fast to the predetermined precise analytical solution, within acceptable tolerance range. Furthermore, it
is evident that the unstructured mesh, which is a more often choice in practice, gives results which are
in very good agreement with the analytical solution.

46.5 Literature

[49] VDI 6201 Beispiel: Softwaregestütze Tragwerksberechnung - Beispiel Scheibe mit kreisförmigem
Loch - Konvergenztest für Scheibenelemente, Kategorie 1: Mechanische Grundlagen. Verein
Deutscher Ingenieure e. V.

[50] C. Petersen. Stahlbau. Grundlagen der Berechnung und baulichen Ausbildung von Stahlbauten.
Vieweg, 1997.

[51] W. D. Pilkey. Formulaes for Stress, Strain and Structural Matrices. Wileys & Sons, 1994.
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47 BE44: Undrained Elastic Soil Layer Subjected to Strip
Loading

Overview

Element Type(s): C2D

Analysis Type(s): STAT

Procedure(s):

Topic(s): SOIL

Module(s): TALPA

Input file(s): soil layer el undr.dat

47.1 Problem Description

The example concerns the behavior of the rectangular soil layer subjected to an uniform strip loading of
intensity p acting on the surface. Base of the soil is rigidly fixed while the sides are laterally constrained.
Geometry, load and boundary conditions are depicted in Fig. 47.1. The soil material is elastic, isotropic
and saturated with water. Two soil conditions have been analyzed - drained and undrained. The drained
and undrained displacements and stresses obtained by the finite element method are compared with
the analytical solution.

4

h = 2

p

A

B

C

Figure 47.1: Problem Definition

47.2 Reference Solution

The analytical solution to the problem obtained using a Fourier series analysis is provided in [52].

47.3 Model and Results

Elastic, isotropic soil under drained and undrained conditions has been analyzed. Material, geometry
and loading properties are summarized in Table 47.1. The undrained soil condition is considered with
the help of the method based on the undrained effective stress (σ′) analysis using effective material
parameters. G and ν′ are effective soil parameters, while B represents the Skempton’s B-parameter.
Self-weight is not taken into consideration.
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Table 47.1: Model Properties

Material Geometry Loading

G, ν′ = 0.3  p

B = 0.998 h = 4

ρ = 0.0 kg/m3

Finite element mesh of the model is shown in Fig. 47.2. Mesh is regular and consist of quadrilateral
finite elements.

Figure 47.2: Finite Element Model

The drained and undrained vertical displacement of the surface nodes along the A−B line are compared
with the analytical solution from [52] and depicted in Fig. 47.3.

0 1 2 3 4

−0.1

0

0.1

0.2

0.3

/

G·y
p·h

analytical, drained
fem, drained
analytical, undrained
fem, undrained

Figure 47.3: Vertical displacement y of the surface

The drained and undrained horizontal and vertical total stresses (σ = σ′ + pe) in the nodes along the
vertical A−C line have been computed and compared with the analytical ones, as show in Figures 47.4a
and 47.4b.
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Figure 47.4: Stresses beneath footing center

Pore excess pressure (pe) distribution for the undrained condition along the center line (A − C) is
shown in Fig. 47.5.

−1−0.8−0.6−0.4

0

0.2

0.4

0.6

0.8

1

pe/p

y/h

Figure 47.5: Excess pore pressure pe beneath footing centre

47.4 Conclusion

This example verifies that the drained and undrained displacements and stresses obtained by the finite
element method are in a good agreement with the analytical solution.

47.5 Literature

[52] J.R. Booker, J.P. Carter, and J.C. Small. “An efficient method of analysis for the drained and
undrained behaviour of an elastic soil”. In: International Journal of Solids and Structures 12.8
(1976), pp. 589 –599.
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48 BE45: One-Dimensional Soil Consolidation

Overview

Element Type(s): C2D

Analysis Type(s): STAT

Procedure(s):

Topic(s): SOIL

Module(s): TALPA

Input file(s): soil 1d consolidation.dat

48.1 Problem Description

In the following example a one-dimensional consolidation problem has been analyzed. The soil layer is
subjected to an uniform loading of the intensity p0 acting on the surface. Base of the soil is rigidly fixed
while the sides are laterally constrained. Only the soil surface is allowed to drain. Geometry, load and
boundary conditions are depicted in Fig. 48.1. The soil material is elastic, isotropic and saturated with
water. The surface settlements and pore excess pressures for the two extreme cases (time zero and
time infinity) of the consolidation process are compared to the analytical solution.



y

z

h

p0

G, ν′, ν, ρ

Figure 48.1: Problem Definition

48.2 Reference Solution

The analytical solution to the problem was given by Terzaghi in 1925 [53]. The solution assumes that the
soil is saturated with water, the soil and water are non-deformable, the volume change takes place only
on the account of the water drainage and the Darcy’s filtration law applies. Then the differential equation
of the one-dimensional process of consolidation for the excess water pressure pe can be written as
[54]:

∂pe

∂t
= c

∂2pe

∂z2
, (48.1)

where:

c = k · Es/γ coefficient of consolidation,

Es stiffness modulus,
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k coefficient of permeability,

γ unit weight of water,

h soil thickness,

z = h − y elevation.

Taking into account the initial and boundary conditions for the problem illustrated by Fig. 48.1

t = 0 and 0 ≤ z < h ⇒ pe = p0, (48.2a)

0 ≤ t ≤∞ and z = 0 ⇒
∂pe

∂z
= 0, (48.2b)

0 ≤ t ≤∞ and z = h ⇒ pe = 0, (48.2c)

t =∞ and 0 ≤ z ≤ h ⇒ pe = 0, (48.2d)

the Eq. 48.1 can be analytically solved for pe as a function of the time t and the elevation z = h − y

pe(t, z)

p0
=
4

π
·
∞
∑

j=0

1

2j + 1
· sin

�

(2j + 1)
π

2

z

h

�

· e−(2j+1)
2π2/4·T (48.3)

where:

p0 surface pressure,

T = c/h2 · t time factor.

With the known change of excess pore pressure with respect to time, the settlement due to consolidation
s(t) at time t can be determined

s(t) =
p0h

Es
·



1 −
8

π2
·
∞
∑

j=0

1

(2j + 1)2
· e−(2j+1)

2π2/4·T



 . (48.4)

For the time infinity, the excess pore pressures will completely dissipate (see Eq. 48.2d) and the final
settlements due to consolidation s∞ will be

s∞ = s(t =∞) =
p0h

Es
. (48.5)

48.3 Model and Results

Elastic, isotropic soil under undrained and drained conditions has been analyzed. Material, geometry
and loading properties are summarized in Table 48.1. The undrained soil condition is considered with
the help of the method based on the undrained effective stress (σ′) analysis using effective material
parameters. G and ν′ are effective soil parameters, while B represents the Skempton’s B-parameter.
Self-weight is not taken into consideration.

Table 48.1: Model Properties

Material Geometry Loading

G, ν′ = 0.0 h p0
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Table 48.1: (continued)

Material Geometry Loading

B = 0.998  = h

ρ = 0.0 kg/m3

Finite element mesh of the model is shown in Fig. 48.2. Mesh is regular and consist of quadrilateral
finite elements.

Figure 48.2: Finite Element Model

The results are summarized in the Table 48.2. Final settlement of the surface of the soil due to consol-
idation s∞ is compared to the analytical solution given by Eq. 48.5. The excess water pressures pe
for the time zero (T = 0, undrained) and time infinity (T =∞, drained) are compared to the analytical
solutions from Eqs. 48.2a and 48.2d.

Table 48.2: Results

T = 0 |e| T =∞ |e|

SOF. Ref. [−] SOF. Ref. [−]

s(T) · Es/(p0h) [−] – 1.0 1.0 0.0

pe(T)/p0 [−] 0.994 1.000 0.006 0.000 0.000 0.000

48.4 Conclusion

The example verifies that the settlements and excess pore pressures for initial (t = 0) and finial (t =∞)
time of the consolidation process obtained by the finite element method are in a good agreement with
the analytical solution.
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48.5 Literature

[53] K. Terzaghi. Erdbaumechanik auf bodenphysikalischer Grundlage. Leipzig (usw.): F. Deuticke,
1925.

[54] K. Terzaghi. Theoretical Soil Mechanics. Wiley, 1948.
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49 BE46: Material Nonlinear Analysis of Reinforced Con-
crete Beam

Overview

Element Type(s): B3D, SH3D

Analysis Type(s): STAT, MNL

Procedure(s):

Topic(s):

Module(s): STAR2, ASE

Input file(s): nonl rein conc.dat

49.1 Problem Description

The problem consists of a single span beam of reinforced concrete, subjected to a single load P in the
middle of the span, as shown in Fig. 49.1. The material nonlinear behaviour of the beam is examined
and compared to test results.



P
b

h

Figure 49.1: Problem Description

49.2 Reference Solution

Materially nonlinear analysis is utilised more and more for the structural design in concrete construction.
It is often overlooked that for such analysis, both in-depth knowledge of the computational algorithms as
well as the behavior of the concrete in cracked condition, are required. The following simple example will
serve for verification of material nonlinear calculations of reinforced concrete beams. It will also highlight
the unavoidable variations in practice. Therefore, the individual test results are given below and not
only the mean values. The load-displacement curves of seven identical concrete beams, which were
prefabricated almost at the same time and under the same controlled conditions, are graphed below. As
a reference solution, these load-displacement curves of the test beams are used.

49.3 Model and Results

The properties of the model [55] are defined in Table 49.1. The simply supported beam is shown in
Fig. 49.1, as well as the dimensions and the reinforcement of the beams. The total length of the span
is tot = 3.0 m. The square rectangular cross-section with edge lengths of 20 cm is reinforced by
four longitudinal bars of � 10 mm and stirrups of � 6-15 cm. For this example the stirrups are not
influential and can be neglected. The load is applied at the midspan and the beam is loaded to failure.
Self weight is accounted for. The material properties of the concrete, B 35 or equivalently a C 35, were
determined on a total of twelve cylinders � 150/300, and are given in Table 49.1. The concrete cover
of the longitudinal reinforcement is c, = 2.4 cm. The reinforcing steel is a BST 500 S, following a
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stress-strain law, as shown in Fig. 49.2.
The results are presented in Fig. 49.4. The deflection in the middlespan is recorded and plotted versus
the load. The expectance is for the numerical calculations to fall into the gray shaded area, which bounds
the curves of seven tests beams. Of particular importance, are the onset of cracking, the slope after the
completion of the cracking and by the yielding of the reinforcement, as well as the limit load.
SOFiSTiK results are presented by the three additional curves included in the original figure.
For beam elements: (a) yellow color with triangles for concrete C 35, (b) red color with circles for
concrete B 35. For quad elements: (c) green color with squares for concrete C 35.
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Figure 49.2: Stress-Strain Curve for Reinforcing Steel
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Figure 49.3: Stress-Strain Curve for Concrete

Table 49.1: Model Properties

Material Properties Geometric Properties Loading

Concrete Steel b = h = 20.0 cm P = 1 kN

B 35 or C 35 BST 500S  = 3.0m until failure

ρ = 2320 kg/m3 c, = 2.4 cm

ƒcm = 54.0 MN/m2 4 bars � 10 mm
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Table 49.1: (continued)

Material Properties Geometric Properties Loading

E = 28000 MN/m2
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Figure 49.4: Load-Displacement Curves
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Figure 49.5: Load-Displacement Curves with reloading

49.4 Conclusion

This example examines the material nonlinear analysis of reinforced concrete beams. It has been shown
that the behaviour is captured accurately.

49.5 Literature

[55] VDI 6201 Beispiel: Softwaregestütze Tragwerksberechnung - Beispiel Stofflich nichtlineare
Berechnung von Stahlbetonbalken, Kategorie 1: Mechanische Grundlagen. Verein Deutscher In-
genieure e. V.
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50 BE47: Pushover Analysis: SAC LA9 Building

Overview

Element Type(s): B3D

Analysis Type(s): MNL

Procedure(s): EIGE

Topic(s): EQKE

Module(s): ASE, SOFiLOAD

Input file(s): pushover sac la9.dat

50.1 Problem Description

In this example a pushover analysis of a moment resisting frame structure is performed. The pushover
curve is identified and compared to the reference solution, as described in Chopra [56].

Figure 50.1: Problem Description

50.2 Reference Solution

In this Benchmark the interest is focused in the retrieval of the pushover curve. The steps involved in this
process are described schematically in Figure 50.2. Important is the definition of the pushover lateral
load case pattern. The pushover analysis is performed by subjecting the structure to this monotonically
increasing load pattern of lateral forces. Here the first three eigenmodes of the structure will be used.
Choosing the characteristic force and displacement of the structure, a so called pushover curve of the
multi-degree-of-freedom (MDOF) system can be obtained. The force, here denoted as Vb, is usually
base-shear, while the displacement is a displacement of the characteristic point on the structure cnod,
also called the roof displacement and the control node displacement.

50.3 Model and Results

The properties of the model are presented in Table 50.1 and Figure 50.3. The model utilised in this
Benchmark consists of the benchmark structure for the SAC project, as has been described by Gupta
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Figure 50.2: Pushover curve determination workflow

and Krawinkler [57], Chopra and Goel [56] and FEMA [58].

“The 9-story structure, was designed by Brandow & Johnston Associates for the SAC2 Phase II Steel
Project. Although not actually constructed, this structure meets seismic code and represents typical
medium-rise buildings designed for the Los Angeles, California, region. The building is square in plan
and rises nine floors above ground in elevation. The bays are 9.15 m on center, in both directions,
with five bays each in the north-south (N-S) and east-west (E-W) directions. The buildingâC™s lat-
eral load-resisting system is composed of steel perimeter moment-resisting frames (MRFS) with simple
(simple hinged connection) framing on the farthest south E-W frame. The columns are steel wide-flange
sections. The levels of the 9-story building are numbered with respect to the ground level, with the ninth
level being the roof. The building has a basement level, denoted B-1. The column lines employ two-tier
construction, i.e., monolithic column pieces are connected every two levels beginning with the first level.
Column splices, which are seismic (tension) splices to carry bending and uplift forces, are located on the
first, third, fifth, and seventh levels at hs = 1.83 m above the center-line of the beam to column joint.
The column bases are modeled as pinned and secured to the ground (B-1). Concrete foundation walls
and surrounding soil are assumed to restrain the structure at the ground level from horizontal displace-
ment. The floor system is composed of steel wide-flange beams in acting composite action with the floor
slab. Each frame resists one half of the seismic mass associated with the entire structure. The seismic
mass of the structure is due to various components of the structure. The model is based on centerline
dimensions of the bare frame in which beams and columns extend from centerline to centerline. The
strength, dimension, and shear distortion of panel zones are neglected.” [56]

“Shear deformations in beam and column elements are neglected. Plastic zones in beams and columns
are modeled as point hinges. The hysteretic behavior at plastic hinge locations is described by a bilinear
moment-rotation diagram. All elements have 3% strain hardening. Expected rather than nominal yield
strength values are used (49.2 ks for A 36 steel and 57.6 ks for A 50 steel). Viscous damping 2%
is used in first mode and at T = 0.2 sec.” [58]

Table 50.1: Model Properties

Material Geometry

A 50  = 9.15m

A 36 hb = 3.65m, hg = 5.49m

206 VERiFiCATiON - Mechanical Benchmarks | SOFiSTiK 2020



BE47: Pushover Analysis: SAC LA9 Building

Table 50.1: (continued)

Material Geometry

hƒ = 3.96m, hs = 1.83m

N

8
×
h
ƒ

h
g

h
b

5 × 
B-1

Ground

1st

2nd
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Figure 50.3: Model Description

(a) Mode 1 (b) Mode 2 (c) Mode 3

Figure 50.4: Eigenmodes

Table 50.2: First three natural-vibration periods

Periods Ref. [56] SOF.

T1 2.27 2.26

T2 0.85 0.85

T3 0.49 0.49
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(a) Mode 1 Pushover Curve
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(b) Mode 2 Pushover Curve
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(c) Mode 3 Pushover Curve

Figure 50.5: Pushover Curves

The first three vibration modes and periods of the building for linearly elastic vibration are shown in
Figure 50.4. The vibration periods are 2.26, 0.85, and 0.49 sec, respectively. The force distributions
of these first three modes are used in the pushover analysis in order to retrieve the pushover curves.
The pushover curves for the first three eigenmodes, are presented in Figures 50.5. The hinge formation
distribution for each pushover analysis, corresponding to approximatelly the last load case depicted in
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each pushover curve, is presented in Figures 50.6.
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Figure 50.6: Hinge distribution

50.4 Conclusion

This example adresses the determination of the pushover curve for a benchmark structure. It has been
shown that the results obtained are in a good agreement with the reference given by Chopra [56].

50.5 Literature

[56] A.K. Chopra and R. K. Goel. A Modal Pushover Analysis Procedure to Estimate Seismic De-
mands for Buildings: Theory and Preliminary Evaluation. Tech. rep. PEER Report 2001/03. Pacific
Earthquake Engineering Research Center - University of California Berkeley, 2001.

[57] A. Gupta and H. Krawinkler. Seismic Demands for Performance Evaluation of Steel Moment Re-
sisting Frame Structures. Tech. rep. Report No. 132. The John A. Blume Earthquake Engineering
Center, 1999.

[58] Prepared for the SAC Joint Venture Partnership by Helmut Krawinkler. State of the Art Report on
Systems Performance of Steel Moment Frames Subject to Earthquake Ground Shaking. Tech. rep.
FEMA-355C. Federal Emergency Management Agency (FEMA), 2000.
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51 BE48: Triaxial Consolidated Undrained (CU) Test

Overview

Element Type(s): CAXI

Analysis Type(s): MNL

Procedure(s): LSTP

Topic(s): SOIL

Module(s): TALPA

Input file(s): triaxial cu test.dat, triaxial cu test 200.dat

51.1 Problem Description

In this example a consolidated undrained (CU) triaxial test on a loose Hostun-RF sand is simulated. The
specimen is subjected to different levels of triaxial confining stresses and the results are compared to
those of the experimental tests and numerical simulations, as described in Wehnert [59].

D

H
σ3

σ1

Figure 51.1: Problem Description

51.2 Reference Solution

In this example two soil models are utilised, the Mohr-Coulomb (MC) and the Hardening Soil (HS) model.
Further details on these two models can be found in Benchmarks 20 and 21.

The choice of the appropriate model for the soil is of a significant importance. For example, MC model
can significantly overestimate the undrained shear strength for a normally consolidated soil. More ad-
vanced models can provide better estimate for the undrained strength than the MC model. In partic-
ular, the HS model is able to represent the change of the excess pore water pressure occurring un-
der undrained shear loading conditions, providing more realistic effective stress paths and values for
undrained shear strength. However, the results of the analysis with the Hardening Soil model are very
sensitive to the used model parameters and the choice of the dilatancy model. Therefore, in this example
for the HS model different dilatancy formulations are tested and their influence on the result examined.

A well-established stress dilatancy theory is described by Rowe [60], where the so-called mobilized
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dilatancy angle ψm is defined as

sinψm =
sinφm − sinφcs
1 − sinφm sinφcs

(51.1)

Therein, the critical state friction angle φcs marks the transition between contractive (small stress ratios
with φm < φcs) and dilatant (higher stress ratios with φm > φcs) plastic flow. The mobilized friction
angle φm in Equation 51.1 is computed according to

sinφm =
σ′1 − σ

′
3

2c · cotφ − σ′1 − σ
′
3

(51.2)

At failure, when φm ≡ φ, also the dilatancy angle reaches its final value ψm ≡ ψ. Accordingly, from
Equation 51.1 the critical state friction angle can be derived as

sinφcs =
sinφ − sinψ

1 − sinφ sinψ
(51.3)

It has been recognized that in some cases the Rowe’s model for dilatancy angles (Eq. 51.1) can over-
estimate the contractive behavior of the soil at low mobilized friction angles, φm < φcs. As a remedy,
several researchers have developed modified formulations based on the original Rowe’s model. Some
of these models which are implemented in SOFiSTiK are described below.

One of the models which does not require additional input parameters is the model according to Soreide
[61] which modifies the Rowe’s formulation by using the scaling factor sinφm/ sinφ

sinψm =
sinφm − sinφcs
1 − sinφm sinφcs

·
sinφm

sinφ
. (51.4)

Wehnert [59] proposed a model based on a lower cut-off value ψ0 for the modification of the Rowe’s
formulation from Eq. 51.1 at low mobilized friction angles

sinψm =











sinψ0 ; 0 < ψm ≤ ψRoem
sinφm − sinφcs
1 − sinφm sinφcs

; ψRoe
m

< ψm ≤ ψ
. (51.5)

This dilatancy model obviously requires a specification of an additional parameter, ψ0.
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Figure 51.2: Comparison of models for mobilized dilatancy angle ψm implemented in SOFiSTiK for
φ = 35◦ and ψ = 10◦

51.3 Model and Results

The properties of the model are presented in Table 51.1. Two material models are considered: the Mohr-
Coulomb and the Hardening Soil, which is combined with the different dilatancy models as described by
the formulations presented in Section 51.2. For the model according to Wehnert (Eq. 51.5) additional
parameter, dilatancy ψ0 at low stress ratios, is used. The undrained calculation is conducted in the
form of effective stresses with effective shear parameters (c′, φ′) and stiffness parameters. Skempton’s
parameter B ≈ 0.9832 (corresponding undrained Poisson’s ratio is ν = 0.495) is considered to
describe the incompressibility of the pore water and saturated soil [59].

The analysis is carried out using an axisymmetric model. Two confining stress levels are considered,
σc = 200 and 300 kP. The undrained triaxial test on loose Hostun-RF sand is used as a reference.
More information about the Hostun-RF sand can be found in Wehnert [59].

Table 51.1: Model Properties

Material Geometry Loading

E = 60.0 MN/m2 Es,reƒ = 16.0 MN/m2 H = 0.09 m Phase I:

νr = 0.25 E50,reƒ = 12.0 MN/m2 D = 0.036 m σ1 = σ3 = σc =

γ = 0.0 MN/m3 m = 0.75 = 200,300 kP

c′ = 0.01 kN/m2 Rƒ = 0.9 Phase II:

φ′ = 34◦ K0 = 0.44 σ3 = σc = 200,300 kP

ψ = 2◦ B = 0.9832 σ1 = σ > σc

ψ0 = −4◦

The results, as calculated by SOFiSTiK, are presented in Figures 51.3 - 51.9 (MC, HS-Rowe, HS-Cons,
HS-Soreide and HS-Wehnert). Figures 51.3 - 51.8, also include the results of the numerical simulations
and of the experimental tests from Wehnert [59] (Wehnert, Exp. 1 and Exp. 2). On a p − q diagram,
apart from the effective stress paths (ESP), the total stress paths (TSP) as well as the Mohr-Coulomb
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failure condition (MC failure) based on the used shear parameters, c′ and φ′, are displayed.

First the numerical simulation results by Wehnert [59] are compared to the results from the laboratory
tests (Exp. 1 and Exp. 2). Although the oedometer and the drained triaxial tests (see also Benchmark 49)
show good agreement with the results from the laboratory tests, the results from the undrained triaxial
tests show deviation from the experimental results (see Figs. 51.3 - 51.8)1. The difference comes mainly
as a result of the used dilatancy model (Eq. 51.5) and the choice of the model parameters, i.e. the peak
dilatancy angle ψ and the lower cut-off dilatancy angle ψ0.

Comparing the results of the development of the deviatoric stress q and the excess pore water pressure
pe between the experiment and the calculation, one can notice a considerable difference, both for
the confining stress level of 200 kP as well as for the level of 300 kP (Figs. 51.4, 51.5, 51.7 and
51.8). As explained in [59], the test sample with confining stress of 200 kP behaves significantly more
dilatant than the sample with the confining stress of 300 kP. Since only one material model has been
used to model the soil, only one peak dilatancy angle can be used to represent the dilatancy effects of
both test cases. This peak dilatancy angle of ψ = 2◦ represents therefore a compromise, leading to a
underestimation of the results for a test with a smaller confining stress level and to overestimation of the
results with larger confining stress level at higher mobilized friction angels.

Further differences arise from the chosen dilatancy model and the used lower cut-off dilatancy angle
ψ0 = −4◦2. Due to the presence of the negative mobilized dilatancy angle (ψm < 0) at low stress
levels, the soil has the tendency to decrease its volume (contraction) under increase of the deviatoric
stress q (shear). However, since the soil is under undrained conditions, the volumetric strains cannot
develop, and as a result the excess pore pressure increases under shear. The increase of the excess
pore pressure means that the effective stresses will reduce (ESP lines curve to the left in the p− q plot,
Figs. 51.3 and 51.6). With the increase of the stress level, the contractive behavior turns to dilatant,
meaning that the negative rate of excess pore pressures (pore water under-pressure) will arise, excess
pore pressures decrease and hence the effective stresses increase. This transition from contractant to
dilatant behavior occurs when the mobilized friction angle φ′

m
becomes larger than the phase transition

angle φ′
ƒ

which is approximately equal to the critical state friction angle φ′
cs

(see Fig. 51.2). As further
noted by Wehnert [59], due to the fact that mobilized dilatancy angle at low stress levels is slightly
heigher and kept constant (ψm = ψ0 for 0 ≤ ψm ≤ ψRoe

m
, Eq. 51.5), the pore water under-pressures

are overestimated.

Next the SOFiSTiK results obtained using the same soil model and dilatancy formulation as in [59] (HS-
Wehnert) can be compared with the reference numerical simulation results (Wehnert). They show good
agreement.

Finally, in other to illustrate the effect that the chosen dilatancy model can have on the results of the
undrained soil, the results of the computation using the hardening soil model with different dilatancy
formulations from Section 51.2 are included.

1Note also that the experimental test results for different samples of the same soil deviate significantly from each other.
2The used value ψ0 = −4◦ is much higher than the values obtained from experimental tests, which range from −13◦ to −21◦.

The reason for choosing this higher value is due to the fact that the experimental test used to obtain the dilatancy parameters
involve not only shear but also some normal stress application to the test samples [59].
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51.3.1 Hostun-RF Sand, σc = 200 kN/m2
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Figure 51.3: Effective stress path curve (q-p)
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Figure 51.4: Deviatoric stress - axial strain curve (q-ϵ1)
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Figure 51.5: Excess porewater pressure - axial strain curve (pe-ϵ1)

51.3.2 Hostun-RF Sand, σc = 300 kN/m2
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Figure 51.6: Effective stress path curve (q-p)
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Figure 51.7: Deviatoric stress - axial strain curve (q-ϵ1)

0 5 10 15
0

50

100

150

200

250

300

ϵ1[%]

p

e
[k
N
/m

2
]

MC
HS-Rowe
HS-Cons
HS-Soreide
HS-Wehnert
Wehnert [59]
Exp. 1 [59]

Figure 51.8: Excess porewater pressure - axial strain curve (pe-ϵ1)
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Figure 51.9: Mobilised dilatancy angle - friction angle curve (ψm-φm)

51.4 Conclusion

This example concerning the consolidated undrained triaxial test of a loose sand soil verifies that the
Hardening Soil material model in combination with an appropriate choice of model parameters and
dilatancy model is able to capture important behavior characteristics of the undrained soil. The numerical
results are in a good agreement with the reference solution provided by Wehnert [59].

51.5 Literature

[59] M. Wehnert. Ein Beistrag zur dreainerten und undrainerten Analyse in der Geotechnik. Institut für
Geotechnik, Universität Stuttgart: P. A. Vermeer, 2006.

[60] P.W. Rowe. “The stress-dilatancy relation for static equilibrium of an assembly of particles in con-
tact”. In: Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sci-
ences 269.1339 (1962), pp. 500–527.

[61] O. K. Soreide. “Mixed hardening models for frictional soils”. PhD thesis. NTNU Norges teknisk-
naturvitenskapelige universitet, 2003.
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52 BE49: Triaxial Drained Test

Overview

Element Type(s): CAXI

Analysis Type(s): MNL

Procedure(s): LSTP

Topic(s): SOIL

Module(s): TALPA

Input file(s): triaxial d test.dat, triaxial d test 100.dat

52.1 Problem Description

In this example a drained (D) triaxial test on a loose Hostun-RF sand is simulated. The specimen is
subjected to different levels of triaxial confining stresses and the results are compared to those of the
experimental tests and numerical simulations, as described in Wehnert [59].

D

H
σ3

σ1

Figure 52.1: Problem Description

52.2 Reference Solution

In this example, the same triaxial test described in Benchmark 48 is examined, but for the case of a
drained sample. Two soil models are utilised, the Mohr-Coulomb (MC) and the Hardening Soil (HS)
model with different dilatancy configurations. Further details on the material models can be found in
Benchmarks 48.

52.3 Model and Results

The properties of the model are presented in Table 52.1. Two material models are considered: the
Mohr-Coulomb and the Hardening Soil, which is combined with the different dilatancy configurations as
described by the formulations presented in Section 52.2 in Benchmark 48.

The analysis is carried out using an axisymmetric model. Two confining stress levels are considered,
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σc = 100 and 300 kP. The drained triaxial test on loose Hostun-RF sand is used as a reference.
More information about Hostun-RF sand can be found in Wehnert [59] and Benchmark 48.

Table 52.1: Model Properties

Material Geometry Loading

E = 60.0 MN/m2 Es,reƒ = 16.0 MN/m2 H = 0.09 m Phase I:

νr = 0.25 E50,reƒ = 12.0 MN/m2 D = 0.036 m σ1 = σ3 = σc =

γ = 0.0 MN/m3 m = 0.75 = 100,300 kP

c′ = 0.01 kN/m2 Rƒ = 0.9 Phase II:

φ′ = 34◦ K0 = 0.44 σ3 = σc = 100,300 kP

ψ = 2◦ B = 0.9832 σ1 = σ > σc

ψ0 = −4◦

The results, as calculated by SOFiSTiK, are presented in Figures 52.2 - 52.8 (MC, HS-Rowe, HS-Cons,
HS-Soreide and HS-Wehnert). Figures 52.2 - 52.7, also include the results of the numerical simulations
and of the experimental tests from Wehnert [59] (Wehnert, Exp. 1 and Exp. 2). On a p − q diagram
the Mohr-Coulomb failure condition (MC failure) based on the used shear parameters, c′ and φ′, is also
displayed.

If we first analyse the reference curves from Wehnert [59], we will notice, that the agreement between
the numerical simulation and the experimental tests is quite good.

Comparing the SOFiSTiK results for the HS model with the dilatancy model acc. to Wehnert (HS-
Wehnert) with the reference numerical results from Wehnert [59], we can notice that the stress paths
p-q are captured exactly for both σc-stress levels. Accordingly, the deviatoric stress q versus the axial
strain ε1 curve fits very well to the reference results. For the case of the strain curves some deviation
in results is identified and it seems that the Soreide dilatancy model shows better agreement with the
simulation results from Wehnert.
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52.3.1 Hostun-RF Sand, σc = 100 kN/m2
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Figure 52.2: Effective stress path curve (q-p)
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Figure 52.3: Deviatoric stress - axial strain curve (q-ϵ1)
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Figure 52.4: Volumetric strain - axial strain curve (ϵ-ϵ1)

52.3.2 Hostun-RF Sand, σc = 300 kN/m2

0 100 200 300 400 500 600 700
0

100

200

300

400

500

600

700

800

p, p′ [kN/m2]

q
[k
N
/m

2
]

MC failure
MC
HS-Rowe
HS-Cons
HS-Soreide
HS-Wehnert
Wehnert
Exp. 1

Figure 52.5: Effective stress path curve (q-p)
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Figure 52.6: Deviatoric stress - axial strain curve (q-ϵ1)
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Figure 52.7: Volumetric strain - axial strain curve (ϵ-ϵ1)
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Figure 52.8: Mobilised dilatancy angle - friction angle curve (ψm-φm)

52.4 Conclusion

This example, concerning the triaxial test of a loose consolidated undrained sand soil, verifies that
the results obtained by the Hardening Soil material model with a cut-off in the dilatancy are in a good
agreement with the solution given by Wehnert [59].

52.5 Literature

[59] M. Wehnert. Ein Beistrag zur dreainerten und undrainerten Analyse in der Geotechnik. Institut für
Geotechnik, Universität Stuttgart: P. A. Vermeer, 2006.
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53 BE50: A Circular Cavity Embedded in a Full-Plane Un-
der Impulse Pressure

Overview

Element Type(s): C2D

Analysis Type(s): DYN

Procedure(s):

Topic(s): SOIL

Module(s): DYNA

Input file(s): sbfem 2d cric cavity.dat

53.1 Problem Description

This example addresses a circular cavity with radius r0 embedded in a full-plane subjected to a radial
pressure p(t) (Fig. 53.1). The full-plane is assumed to be elastic, homogeneous, isotropic, without
material damping which stretches to infinity and it is modeled with the help of the Scaled Boundary
Finite Elements (SBFE). Plane-strain condition is considered. Load is in a form of a triangular impulse
and applied on the cavity wall (Fig. 53.1b). Radial displacement response of the cavity wall has been
computed and compared to the analytical solution.

r0

p(t)

(a) Circular cavity embedded in a full-
plane

t̄ = t · cs/ r031.50

p(t̄)

p0

(b) Pressure load

Figure 53.1: Problem Definition

53.2 Reference Solution

This problem is essentially a one dimensional problem which has an analytical solution [62]. The force-
displacement relationship for this problem in frequency domain is given by

P(ω) = S∞(ω) · r(ω) , (53.1)

where ω = 2πƒ represents the circular frequency, P(ω) is the total force applied on the cavity wall,
r(ω) is the radial displacement and S∞(ω) is the dynamic-stiffness coefficient.
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The dynamic-stiffness coefficient for this particular problem has an analytical expression and it reads

S∞(0) =
2πG0

1 − 2ν
·



2(1 − ν)
λ − 1 − F

λ
− 2ν + 2(1 − ν)

H
(2)
F+1(λ0)

H
(2)
F (λ0)

0



 , (53.2)

where

G0 shear modulus,

ν Poisson’s ratio,

ρ mass density,

cs =
p

G/ρ shear wave velocity,

cp = cs
p

(2 − 2ν)/(1 − 2n) P-wave velocity,

0 = ωr0/cp dimensionless frequency,

λ = 2/(2 − α) coefficient,

α non-homogeneity parameter of elasticity (α = 0 for the homo-
geneous case),

H
(2)
k the second kind Hankel function of the order k,

F =

√

√

√

(λ − 1)2 − λ2
ν(α + 1) − 1

1 − ν
order of the Hankel function.

The static-stiffness coefficient K∞ is used to non-dimensionlize displacement response

K∞ =
2πG0

1 − 2ν
·
h

α(1 − ν) − 2ν +
q

(α(1 − ν) − 2ν)2 + 4 − 8ν
i

. (53.3)

The radial displacement response in frequency domain r(ω) is obtained by first making the Fourier
transformation of the total triangular impulse load P(ω) (Fig. 53.1b) and then dividing it with the dynamic-
stiffness coefficient S∞(ω) (Eq. 53.1). Finally the displacement response is transformed in the time
domain (r(t)) using the inverse Fourier transformation.

53.3 Model and Results

Material, geometry and loading properties of the model are summarized in the Table 53.1. The plane-
strain model of the full-pane is assumed to be elastic, homogeneous (α = 0) and isotropic.

Table 53.1: Model Properties

Material Geometry Loading Integration parameters

cs, ρ, ν = 0.3 r0 P(t) = 2πr0p(t) Δt = 0.04 · r0/cp

G0 = ρc2s P0 = 2πr0p0 M, N, θ = 1.4

Load and the finite element model of the structure are depicted in Fig. 53.2. The structure is comprised
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solely of the 2-node line scaled boundary finite elements and the load is applied directly to the nodes of
the boundary.

Figure 53.2: Finite Element Model

The transient radial displacement response of the cavity wall r(t) has been computed using the Scaled
Boundary Finite Element Method (SBFEM) in the time domain. The integration of the governing equa-
tions of the SBFEM is performed using the original discretization scheme (const) [62][63] and the ex-
trapolation scheme from [64] based on the parameters M, N and θ 1.

The results in dimensionless form are plotted in Fig. 53.3 together with the analytical solution. The
numerical results show excellent agreement with the analytical solution for all three cases.
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Figure 53.3: Radial displacement response

53.4 Conclusion

The example verifies the accuracy of the SBFEM method in modeling unbounded domain problems.
The integration scheme for the solution of the governing equations of the SBFEM in time domain based
on the work from [64] provides the solution with high computational efficiency and little loss of accuracy
compared to the original method from [63].

1For the full description of the scheme based on the extrapolation parameter θ and the meaning of the integration parameters
M, N and θ consult [64].
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54 BE51: Pushover Analysis: Performance Point Calcu-
lation by EC8 Procedure

Overview

Element Type(s):

Analysis Type(s):

Procedure(s):

Topic(s): EQKE

Module(s): SOFiLOAD

Input file(s): pushover-pp-ec8.dat

54.1 Problem Description

The following example is intended to verify the Eurocode 8 (EC8) procedure for the calculation of the
performance point (illustrated schematically in Fig. 54.1), as implemented in SOFiSTiK. The elastic
demand and capacity diagrams are assumed to be know.

SdSdp

S

Sp

El. Demand Diagram

Performance Point

Capacity Diagram

Demand Diagram

Figure 54.1: Determination of the performance point PP (Sdp, Sp)

54.2 Reference Solution

The reference solution is provided in [65].

Assuming that the elastic demand diagram (5% elastic response spectrum in ADRS format1) and the
capacity diagram are known, it is possible to determine the performance point PP (Sdp, Sp) (Fig. 54.1).
The procedure comprises of a series of trial calculations (trial performance points PPt (Sdp,t , Sp,t)),
in which the equivalent inelastic single degree of freedom system (SDOF), represented by the capac-
ity diagram, is idealized with the equivalent inelastic SDOF system with a bi-linear force-deformation
relationship. The response in form of the performance point PP is then calculated from the inelastic
response spectrum (demand diagram). The computation stops when the performance point PP is within
a tolerance of a trial performance point PPt. Detailed description of this procedure can be found in [66],
[67], [65] and [37].

In the reference example [65] the bi-linear idealization of the capacity is assumed to be independent of
1ADRS = Spectral Acceleration S - Spectral Displacement Sd format
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the performance point and it is performed at the beginning of the analysis. This eliminates the need for
the iterations and the solution of the problem can be obtained in a single calculation step.

Sd

S

μ = 1

Tc
T∗ = Ty

PE

Sde

Se

PP

Sdp

Sp
PY

Sdy

μ > 1

(a) Short period range, T∗ < TC

Sd

S

μ = 1

Tc

T∗ = Ty

PE

Sdp = Sde

Se

PP
Sp
Sy

PY

Sdy

μ > 1

(b) Medium and long range, T∗ > TC

Figure 54.2: Determination of the performance point PP for the equivalent SDOF system

Hence in this example it is assumed that the bi-linear idealization of the capacity diagram is already
known, which means that the point PY (Sdy, Sy) is given. The procedure to calculated the performance
point is illustrated in Fig. 54.2 and can be summarized as follows [37]:

1. Determine the period of the idealized system T∗ = Ty from the known PY (Sdy, Sy):

T∗ = Ty = 2π ·

√

√

√

Sdy

Sy
; (54.1)

2. Calculate the elastic spectral response PE (Sde, Se) of the idealized equivalent SDOF system
with the period T∗ = Ty from the given 5%-damped elastic response spectrum (Fig. 54.2);

3. Calculate the yield strength reduction factor Ry:

Ry =
Se

Sy
; (54.2)

4. Calculate ductility μ:

μ =











(Ry − 1) ·
TC

T∗
+ 1 for T∗ < TC

Ry for T∗ ≥ TC
; (54.3)

5. Determine the performance point PP (Sdp, Sp) from the inelastic design spectrum:

Sdp = μ · Sdy = μ ·
Sde

Ry
, (54.4a)

Sp =
Se(T∗)

Ry
. (54.4b)
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54.3 Model and Results

In order to verify the analysis procedure for the determination of the performance point, a test case has
been set up in such a way that it comprises of a SDOF with a unit mass and a non-linear spring element.
It is obvious that for such an element the quantities governing the transformation from the original system
to the equivalent inelastic SDOF system must be equal to one, i.e.

ϕcnod = 1 ;  = 1 ; m = 1 , (54.5)

where ϕcnod is the eigenvector value at control node,  is the modal participation factor and m is the
generalized modal mass. Writing now the equations which govern the conversion of the pushover curve
to capacity diagram, we obtain [37]

Sd =
cnod

ϕcnod · 
= cnod , (54.6a)

S =
Vb

2 ·m
= Vb , (54.6b)

where Vb is the base shear and cnod is the control node displacement.

Since the original system is a SDOF system, Vb and cnod are nothing else but the force in spring P
and the displacement of the unit mass , respectively. It follows further that the force-displacement work
law assigned to the spring element corresponds to the capacity diagram in ADRS format, with the force
P and displacement  equal to S and Sd, respectively.

The bi-linear idealization of the capacity diagram used in the reference example is defined by two points,
whose coordinates are listed in the Table 54.1 2. According to the analysis above, these points can be
used to define the force- displacement work law P −  of the non-linear spring element (Fig. 54.3).

Table 54.1: Model Properties [65]

Capacity Diagram Elastic Demand

Point
�

Sd[mm], S[m/s2]
�

5%-Damped Elastic Response Spectrum

A (61,3.83) g = {0.60g,0.30g,0.16g}

B (∞,3.83) SA = 1.0, SB = 2.5, k1 = 1.0

TB = 0.15s, TC = 0.60s, TD = 3.00s

2Not that the point A is nothing else but the point PY (Sdy, Sy).
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Figure 54.3: Force-displacement work law of the non-linear spring

The elastic demand is a 5%-damped elastic response spectrum, whose properties are summarized in
Table 54.1. Three levels of peak ground acceleration g have been taken into an account. The shape of
the spectrum and the meaning of the parameters specified in Table 54.1 are shown in Figure 54.4.

S(T)

T

SA
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0 ≤ T ≤ TB :

S = SA +
T

TB
· (SB − SA)

TB ≤ T ≤ TC :

S = SB

TC ≤ T ≤ TD :

S = SB ·
�

TC

T

�k1

Figure 54.4: 5%-Damped Elastic Response Spectrum (El. Demand Diagram)

The outcome of the analysis is shown in Figures 54.5 to 54.7.
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Figure 54.5: Capacity-Demand-Diagram (g = 0.60g)
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Figure 54.6: Capacity-Demand-Diagram (g = 0.30g)
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Figure 54.7: Capacity-Demand-Diagram (g = 0.15g)

The results of the SOFiSTiK calculation and the comparison with the reference solution are summarized
in Table 54.2.

Table 54.2: Results

g μ Ryp Ty Sdy Sdp Sp

[g] [−] [−] [s] [mm] [mm] [m/s2]

SOF. 2.9 2.9 0.79 61 177 3.83

0.60 Ref. [65] 2.9 2.9 0.79 61 177 3.83

|e| [%] 0.0 0.0 0.0 0.0 0.0 0.0

SOF. 1.5 1.5 0.79 61 89 3.83

0.30 Ref. [65] 1.5 1.5 0.79 61 89 3.83

|e| [%] 0.0 0.0 0.0 0.0 0.0 0.0

SOF. 1.0 1.0 0.79 44 44 2.78
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Table 54.2: (continued)

g μ Ryp Ty Sdy Sdp Sp

[g] [−] [−] [s] [mm] [mm] [m/s2]

0.15 Ref. [65] 1.0 1.0 0.79 44 44 2.76

|e| [%] 0.0 0.0 0.0 0.0 0.0 0.7

μ displacement ductility factor
Ryp reduction factor due to ductility at performance point
Ty period associated with yielding point
Sdy, Sdp spectral displacements at yielding and performance point
Sp pseudo spectral acceleration at performance point

The results are in excellent agreement with the reference solution.

54.4 Conclusion

Excellent agreement between the reference and the results computed by SOFiSTiK verifies that the pro-
cedure for the calculation of the performance point according to Eurocode 8 is adequately implemented.

54.5 Literature

[37] SOFiLOAD Manual: Loads and Load Functions. Version 2018-0. SOFiSTiK AG. Oberschleißheim,
Germany, 2017.

[65] P. Fajfar. “A Nonlinear Analysis Method for Performance-Based Seismic Design”. In: Earthquake
Spectra 16.3 (2000), pp. 573–592.

[66] EN1998-1:2004. Eurocode 8: Design of structures for earthquake resistance, Part 1: General
rules, seismic actions and rules for buildings. CEN. 2004.

[67] P. Fajfar. “Capacity Spectrum Method Based on Inelastic Demand Spectra”. In: Earthquake engi-
neering and structural dynamics 28.9 (1999), pp. 979–993.
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55 BE52: Verification of Wave Kinematics

Overview

Element Type(s):

Analysis Type(s):

Procedure(s):

Topic(s): WAVE

Module(s): SOFiLOAD

Input file(s): stokes.dat

55.1 Problem Description

This benchmark is concerned with the validation of wave kinematics of regular nonlinear Stokes 5th

order wave theory. In Fig. 55.1 the properties of a wave can be visualised.

z

x
H

L

d

S W L

c

η

h

Figure 55.1: Wave

55.2 Reference Solution

The reference solution is provided in [68]. This article investigates the solution of the dispersion relation
of Stokes fifth order wave theory, which is governed by two coupled nonlinear equations in two variables,
through a Newton-Raphson iterative scheme. Different waves are investigated and their wave profile
and horizontal velocitiy is computed and plotted. The interest of this benchmark focuses on the provided
solution for the corrected coefficient in the original expression for C2 (the factor +2592 should be
replaced by −2592), which is employed also from SOFiSTiK. For more information on this correction
please refer to Nishimura & al. (1977), Fenton (1985) [69], Bhattacharyya (1995) [68] and SOFiLOAD
manual [37].

55.3 Model and Results

The properties of the considered wave are defined in Table 55.1.
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Table 55.1: Model Properties

Wave Properties

d = 107 ƒ t H = 70 ƒ t T = 16.30 s

The wave profile, i.e. the phase angle θ versus the surface elevation η, is computed and shown in Fig
55.2 and the horizontal velocity under the wave crest versus the elevation from the seabed (z − d), in
Fig 55.3. Both results are compared to the reference solution, as peresented in Bhattacharyya (1995)
[68].
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Figure 55.2: Wave profile
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Figure 55.3: Horizontal velocity under wave crest

55.4 Conclusion

The very good agreement between the reference and the results computed by SOFiSTiK verifies that
the Stokes fifth order wave theory is adequately implemented.

55.5 Literature

[37] SOFiLOAD Manual: Loads and Load Functions. Version 2018-0. SOFiSTiK AG. Oberschleißheim,
Germany, 2017.

[68] S. K. Bhattacharyya. “On two solutions of fifth order Stokes waves”. In: Applied Ocean Research
17 (1995), pp. 63–68.

[69] J. D. Fenton. “A fifth order Stokes theory for steady waves”. In: J. Waterways, Port, Coastal &
Ocean Engineering 111(2) (1985), pp. 216–234.
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56 BE53: Verification of Wave Loading

Overview

Element Type(s):

Analysis Type(s):

Procedure(s):

Topic(s): WAVE

Module(s): SOFiLOAD

Input file(s): wave loading.dat

56.1 Problem Description

This benchmark is concerned with the validation of wave loading on a structure. In this example the linear
Airy wave theory with Wheeler stretching is applied to one exemplary wave on a monopile, as presented
in Fig. 56.1. The surface elevation and the accumulated forces produced by the wave theory are
compared with the results calculated by WaveLoads. WaveLoads is a well-known software developed
within the research project GIGAWIND at Hannover University for calculating wave induced loading on
hydrodynamically transparent structures [70].
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Figure 56.1: Wave

56.2 Reference Solution

The reference example is calculated with WaveLoads. Further information on the model can be found
in the WaveLoads manual [70]. This benchmark aims at verifying three important components: the Airy
wave theory, the Wheeler stretching scheme and the Morison equation [37].

56.3 Model and Results

The properties of the considered wave and the structure are defined in Table 56.1. The wave profile, i.e.
the surface elevation η over time of one period, is computed and shown in Fig 56.2 and the accumulated
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forces over time of one period, in Fig 56.3. Both results are compared to the calculated reference
solution [70].

Table 56.1: Model Properties

Wave Properties Structure Properties

d = 34m Dp = 6m

H = 17.5m Lp = 54m

T = 15 s Cm = 2.0

SWL = 0m Cd = 0.7

The pile is modeled with 500 elements as in the reference example. The Wheeler stretching is applied.
The calculated wave length is L = 246.013m and the calculated depth criterion d/L = 0.138 indicates
that the examined case falls into finite water.
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Figure 56.2: Wave profile
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Figure 56.3: Accumulated Force for Airy linear wave theory in combination with Wheeler Stretching

56.4 Conclusion

The very good agreement between the reference and the results computed by SOFiSTiK verifies that
the linear Airy wave theory, the Wheeler stretching scheme and the Morison equation are adequately
implemented.

56.5 Literature

[37] SOFiLOAD Manual: Loads and Load Functions. Version 2018-0. SOFiSTiK AG. Oberschleißheim,
Germany, 2017.

[70] K. Mittendorf, B. Nguyen, and M. Blümel. WaveLoads - A computer program to calculate wave
loading on vertical and inclined tubes. ISEB - Fluid Mechanics Institute, University of Hannover.
2005.
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57 BE54: Equivalent Linear Temperature Load

Overview

Element Type(s):

Analysis Type(s):

Procedure(s):

Topic(s): Fire and temperature

Module(s): SOFiLOAD

Input file(s): eqv linear temp load.dat

57.1 Problem Description

The following example is focused on verifying the effects of the nonlinear temperature gradient along
the height of a beam’s cross section. A simply supported beam (Figure 57.1a) is analyzed with the
corresponding temperature distribution (heating and cooling profiles) in the cross section (Figure 57.1b).
The internal stresses due to the nonlinear temperature gradient can be divided into stresses due to
uniform and linear temperature component and into remaining self-equilibrating eigenstresses [71].

Figure 57.1: (a) Simply supported beam; (b) Cross section with corresponding heating and cooling
profiles

57.2 Reference Solution

The reference solution is calculated analytically from the stress distribution corresponding to the re-
strained conditions, which is obtained by multiplying the assigned temperature profile with the coefficient
of thermal expansion αt and the modulus of elasticity E [72, 73] :

σT(z) = −EαtΔT(z), (57.1)

Stress due to the restraining axial force is derived by integrating the stresses σT(z) multiplied with the
corresponding width b(z) over the cross section height and dividing the value with the cross-section
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area A [72, 73]. The same stress value can be obtained by multiplying the equivalent uniform (constant)
temperature component ΔTeq with the coefficient of thermal expansion and the modulus of elasticity
(Figure 57.2b):

σcons =
1

A

∫ h

0
σT(z)b(z)dz = −EαtΔTeq (57.2)

Stresses due to the restraining moment are calculated by taking moments around the centroid of the
cross section and dividing the values with the section modulus [72, 73]. Correspondingly, the linear
temperature distribution multiplied with the coefficient of thermal expansion and the modulus of elasticity
(Figure 57.2c) yields the same stress values. Hence, the equivalent linear temperature component
ΔTz,eq can be derived from the following expression:

σne =
1

/h

∫ h

0
σT(z)b(z)(z − z̄)dz = −EαtΔTz,eq (57.3)
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Figure 57.2: (a) Restrained stresses; (b) Stresses due to the equivalent uniform temperature; (c)
Stresses due to the equivalent linear temperature; (d) Self-equilibrating eigenstresses

In case of a simply supported beam, it is free to expand and bend. Therefore, the corresponding strain
distributions are generated. The differences between the restrained stress distribution and that which
result in axial and bending strains, are trapped in the section and are known as self-equilibrating eigen-
stresses [73].

57.3 Model and Results

Two different cross-sections with the corresponding nonlinear temperature gradient are investigated:
a concrete T-beam and a composite cross-section. The used material properties for concrete and
steel are presented in Table 1. The implemented geometry and the temperature loading profiles for
both heating and cooling conditions are shown in Figure 3. The beam’s length is chosen to be 10
m. Reference solution for the same concrete T-beam cross-section, material properties and heating
conditions can be found in [73].

Table 57.1: Material Properties

Type of cross section Material properties

T-beam Econc = 35000MP
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Table 57.1: (continued)

Type of cross section Material properties

αt,conc = 1.2 × 10−5 K−

Composite cross section Econc = 35000MP Estee = 210000MP

αt,conc = 1.2 × 10−5 K− αt,stee = 1.2 × 10−5 K−

13.5 °C

3.0 °C

2.5 °C

-8.0 °C

-1.5 °C

-1.5 °C

-6.3 °C

13.0°C

4.0°C

-3.5 °C

-8.0 °C

-8.0 °C

Heating Cooling

Heating Cooling

a)

b)

Figure 57.3: (a) T-beam concrete cross section - geometry [cm] with assigned temperature profiles; (b)
Composite cross section - geometry [cm] with assigned temperature profiles

The calculated values of the equivalent uniform and linear temperature component are compared with
the reference values in Table 2.

Table 57.2: Results

ΔTeq ΔTz,eq

[◦C] [◦C]

T-beam Heating SOF. 4.600 −11.096

Ref.[73] 4.600 −11.096

|er | [%] 0.00 0.00

Cooling SOF. −3.544 4.704

Ref. −3.544 4.704

|er | [%] 0.00 0.00

Composite Heating SOF. 5.111 −9.740
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Table 57.2: (continued)

ΔTeq ΔTz,eq

[◦C] [◦C]

Ref. 5.111 −9.740

|er | [%] 0.00 0.00

Cooling SOF. −2.047 −7.371

Ref. −2.047 −7.371

|er | [%] 0.00 0.00

Calculated eigenstresses for a simply supported beam with the T-beam cross-section are shown in
Figure 57.4. Results for the temperature heating profile calculated in [73] correspond nicely with the
SOFiSTiK calculated eigenstresses (Figure 57.4a).
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Figure 57.4: Eigenstresses for the T-beam cross-section in N/mm2

57.4 Conclusion

An excellent agreement between the reference solution and the numerical results calculated by
SOFiSTiK verifies that the effects of the nonlinear temperature gradient are adequately taken into ac-
count.

57.5 Literature

[71] M.M. Elbadry and A. Ghali. “Nonlinear temperature distribution and its effects on bridges”. In:
International Association of Bridge and Structural Engineering Proceedings (1983), pp. 66–83.

[72] L.A. Clark. Concrete Bridge Design to BS 5400. Construction Press, 1983.
[73] D.L. Keogh and E. O´Brien. Bridge Deck Analysis. CRC Press, 2005.
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58 BE55: Design elements and SOFiSTiK T-beam Philos-
ophy

Overview

Element Type(s): B3D, SH3D

Analysis Type(s): Linear

Procedure(s):

Topic(s): Design Elements

Module(s): ASE, DECREATOR

Input file(s): designElements tbeamphilosophy.dat

58.1 Problem Description

This verification sets a benchmark for Design Elements in SOFiSTiK 2018 at the analysis level. Re-
sults are compared with those of the existing SOFiSTiK T-Beam Philosophy, and a reference analytical
solution.

58.2 Reference Solution

As an example, the solution of the bending moment at the middle support My,s of a two span continuous
T-beam system shown in figure 58.1 is considered. The effective width of the beam is the determining
parameter. The exact analytical value of the support moment is given by:

My,s =
2

8
(58.1)

w

l l

My, sx

z

Figure 58.1: Reference system: continuous beam and its bending moment distribution

For bending design of a T-beam, analysis can be done in the module ASE using the SOFiSTiK T-
beam Philosophy [74, 75, 76, 77]. Accordingly, the resulting bending moment My,Tbem is calculated
by multiplying the effective width beƒ ƒ with the nodal value of the plate elements that is computed by
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averaging some of the nodal values of the plates the at the support (eg. my,g. = (m1+m2+m3)/3),
then adding the remaining moment carried by the beam element My,bem. That is:

My,Tbem = My,bem +my,g. · beƒ ƒ (58.2)

58.3 Model and Results

The wide flange of the continuous T-beam is modeled with quad elements. In addition, a centric beam
with a T-cross section is embedded at the center of the flange. A uniformly distributed area load is then
applied over the flange. To supplement the comparison, three variations of this model are made, in
which only the effective width is altered.

Effective width, beff

Beam element
with T-Section

Plate elements
of flange

Geometric center
of cross section

Mid-line of
Plates

l

Figure 58.2: Sectional layout of a T-beam FE-model according to the T-beam Philosophy in SOFiSTiK

In contrast to the SOFiSTiK T-Beam Philosophy stated in equation 58.2, the bending moment calculation
by Design Elements takes the integral of all the nodal values covered within the effective width, then adds
the remaining beam moment. This improves the approximation, and can be put as:

My,Tbem = My,bem +
∫ beƒ ƒ

0
my,p() d (58.3)

Figure 58.3 illustrates this difference.

my, avg.

m2

m1 m3

beff

Figure 58.3: Consideration of the actual support bending moment distribution across the plate elements
in T-beam Philosophy (left) and Design Elements

As a result, applying the T-beam Philosophy on a model with a larger effective width, the error in the
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support bending moment is more pronounced (see table 58.1). However, the results of the Design
Elements, as one may expect, remain well approximate for all effective widths. In this example, larger
widths were so chosen that the deviations could clearly be illustrated.

Table 58.1: Comparison of support moments for varying effective widths

Effective Widths beƒ ƒ , [m] 1.0 2.0 4.0

Ref. [kNm] −32.4 −64.8 −129.6

SOF. T-Beam Phil. [kNm] −32.2 −66.2 −148.8

|e| [%] 0.6 2.0 10.0

Design Elements [kNm] −32.0 −64.0 −129.3

|e| [%] 1.2 1.2 0.2

58.4 Conclusion

In case of a flexural design of a finite element structural model consisting T-beams, the results using
the Design Elements and the SOFiSTiK T-beam Philosophy match that of the exact analytical solution
up to a certain effective width. The design elements however always ensure more approximate results
regardless of the effective width.

58.5 Literature

[74] C. Katz and J. Stieda. Praktische FE-Berechnungen mit Plattenbalken. Bauinformatik 1, 1992.
[75] W. Wunderlich, G. Kiener, and W. Ostermann. Modellierung und Berechnung von Deckenplatten

mit Unterzügen. Bauingenieur, 1994.
[76] J. Bellmann. Vorgespannte schiefwinklige Plattenbalkenbrücke. 7. SOFiSTiK Seminar, 1994.
[77] C. Katz. Neues zu Plattenbalken. 7. SOFiSTiK Seminar, 1994.
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59 BE56: Interface element

Overview

Element Type(s): C2D

Analysis Type(s): MNL

Procedure(s):

Topic(s): Interface Element

Module(s): SOFIMSHC, TALPA

Input file(s): interface elements.dat

59.1 Problem Description

The following example is focused on verifying the interface element which can be used to model the
contact behaviour in a geotechnical model. In the example according to [78] interface elements are
simulating the contact between a long elastic block on a rigid foundation. The block is subjected to
pressure p at one vertical side, while being restrained at the other end, and no strain is permitted in the
y direction (Figure 59.1).

Figure 59.1: Long elastic block on a rigid foundation

59.2 Reference Solution

The distribution of shear stress along the interface between  = 0 and  = 1, where 1 is the point at
which the shear stress reaches its maximum level, is given analytically by [78]:

τ() =
ksm

α
·
e − e−

e1 − e−1
·
�

pH − τm(L − 1)
�

(59.1)

where

m =
(1+ν)(1−2ν)

E(1+ν)

α =
Ç

ksm
H

ks shear stiffness parameter,
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ν Poisson’s ratio,

E Elastic modulus,

p pressure applied at  = L,

τm maximum shear stress (cohesion)

H height of the elastic block,

L length of the elastic block

For the slipping portion of the block, between  = 1 and  = L, the shear stress is constant, i.e.
τ = τm.

The point  = 1 is calculated iteratively by applying the Newton Raphson iterative scheme for the
following equation [78, 79]:

e + e−

e1 − e−1
+ α(L − 1) −

pαH

τm
= 0 (59.2)

59.3 Model and Results

Material, geometry and loading properties of the model are summarized in the Table 59.1. To satisfy the
required condition of no strain in the y direction the normal stiffness of the interface elements, i.e. the
elastic constant normal to the interface surface cs is defined with a relatively high value. Plane strain
conditions are assumed, and nonlinear analysis is performed with loading being increased in increments
of 2.5 kP up to 400 kP.

Table 59.1: Model Properties

Material Geometry Loading

Elastic block: Increments of 2.5 kP

E = 100MP, ν = 0.0 L = 10.0m,H = 1.0m up to 400 kP

Interface elements:

ks = ct = 104 kN/m3 Thickness of 0.01m

τm = coh = 30 kN/m2

cs = 107 kN/m3

The shear stress distribution along the interface length is plotted in Figure 59.2, and verified with respect
to the formulas provided in Section 59.2 for the loading levels of 100, 200, 300 and 400 kP. Further-
more, the longitudinal displacement distribution at the bottom of the elastic block is compared with the
results of the finite element analysis provided by [78] (Figure 59.3).
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Figure 59.2: Interface shear stress distribution
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Figure 59.3: Longitudinal displacement distribution at the bottom of the elastic block

When comparing the numerical results in Figure 59.2 with the analytical solution a slight difference can
be noticed. It should be noted that the analytical solution provided in Section 59.2 is not exact since it
is based on the assumption that the normal stresses are constant along the height of the elastic block
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[78]. In reality, the normal stress will be higher near the unrestrained upper boundary compared to the
lower one, which can be seen in Figure 59.4 for a distance of 2 m from the restrained vertical face of
the elastic block.
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Figure 59.4: Stress distribution along the height of the block, at  = 2.0 [m]

59.4 Conclusion

A good agreement between the reference solution and the numerical results calculated by SOFiSTiK
verifies the implementation of the interface element.

59.5 Literature

[78] C.C. Hird and D. Russell. “A Benchmark for Soil-Structure interface Elements”. In: Computers and
Geotechnics (1990).

[79] R.C. Barros et al. “A Benchmark for Soil-Structure interface Elements”. In: Proceedings of the
XXXVIII Iberian Latin-American Congress on Computational Methods in Engineering (2017).
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60 BE57: Response Spectrum Analysis of a Simply Sup-
ported Beam

Overview

Element Type(s):

Analysis Type(s):

Procedure(s):

Topic(s): EQKE

Module(s): DYNA

Input file(s): response spectrum analysis.dat

60.1 Problem Description

The following example is focused on the results of a response spectrum analysis of a simply supported
beam, with the problem description defined by [80]. A simple beam with a rectangular cross section,
shown in Fig.60.1a, is subjected to a vertical movement of its supports according to the acceleration
history shown in Fig.60.1b. The acceleration changes linearly from g to −g within a time period of 2td,
and is zero afterwards, with g being the gravitational acceleration.

The response of the system is determined based only on the first eigenmode. Therefore, modal super-
position is not carried out in this example. Furthermore, zero damping of the system is assumed.

L

a)

b)

y

x

a [m/s2]

t [s]td 2td

g

-g

Figure 60.1: (a) Simply supported beam; (b) Acceleration history

The acceleration of a mass in a SDOF spring-mass system subjected to the base acceleration history
from Fig.60.1b is defined as follows [80], for t ≤ 2td:
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̈ = g
�

1 − cosωt +
sinωt

ωtd
−

t

td

�

(60.1)

and for t > 2td:

̈ = ̈t=2td cosω(t − 2td) + ̇t=2td
sinω(t − 2td)

ω
(60.2)

where ω is the circular eigenfrequency.

60.2 Reference Solution

In the first step of the response spectrum analysis, the eigenfrequency of the first eigenmode is calcu-
lated as follows [80]:

ƒ =
π

22

√

√

√Ey

m
(60.3)

where  is the length and m is the mass per unit lenght of the beam, and Ey is the bending stiffness.

Based on the calculated eigenfrequency, the maximum relative displacement of the equivalent SDOF
system, m,0, is determined from the corresponding response spectrum [80]. Subsequently, the
maximum beam deflection is calculated [80]:

m = m,0 (60.4)

The shape function for the first eigenmode () is given by [80]

() = sin
π


(60.5)

, and the modal participation factor  is calculated as:

 =

∫ 

0m()d
∫ 

0m[()]
2d

=
4

π
(60.6)

The bending moment is defined as follows [80]:

M = −Ey
∂2()

∂2
(60.7)

where () is the beam deflection for the first eigenmode

() = m sin
π


(60.8)

Therefore, the maximum bending moment in the middle of the span is computed as:
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My,m =
Eyπ2

2
m (60.9)

60.3 Model and Results

Material, geometry and loading properties of the beam model defined in a plane system are summarized
in Table 60.1.

Table 60.1: Model Properties

Material Properties Geometric Properties Loading

E = 206842MP  = 6.096m g = 10m/s2

ρ = 104730 kg/m3 h = 35.56mm td = 0.1 s

b = 3.7026mm

The response spectrum values are calculated as maximum acceleration values, in the units of g, from
the Equations 60.1 and 60.2 as a function of the eigenperiod. For the purpose of this example, only the
values in the proximity of the system´s first eigenperiod are taken as the input points of the response
spectrum. The selected points are listed in Table 60.2 and also shown on the graph of the response
spectrum, which is plotted as a function of the eigenfrequency in Figure 60.2.

Table 60.2: Calculated points of the response spectrum

Eigenfrequency [Hz] Eigenperiod [s] Max. acceleration [g]

5.00 0.20 1.453137

5.50 0.181818 1.818181

6.00 0.166667 1.428571

6.05 0.165289 1.626016

6.10 0.163934 1.639344

6.15 0.162602 1.652893

6.50 0.1538461 1.538461

7.00 0.142857 1.666667
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Figure 60.2: The response spectrum and the selected input points

The calculated values of the eigenfrequency ƒ of the first mode, and the maximum deflection m and
the bending moment My,m in the middle of the span as a result of the response spectrum analysis,
are compared with the reference values in Table 60.3.

Table 60.3: Results

SOF. Ref. [80]

ƒ [Hz] 6.12 6.10

m [mm] 14.15 14.22

My,m [kNm] 108.03 108.41

60.4 Conclusion

A very good agreement between the reference solution and the numerical results calculated by
SOFiSTiK verifies the implementation of the response spectrum analysis.

60.5 Literature

[80] J.M. Biggs. Structural Dynamics. McGraw-Hill, 1964.
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